Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 205-363-0 | CAS number: 139-43-5
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Key value for chemical safety assessment
Genetic toxicity in vitro
Description of key information
Key study conducted according to recognised testing guideline and with GLP certification.
Link to relevant study records
- Endpoint:
- in vitro gene mutation study in bacteria
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Study period:
- 10 December 2010 - 03 January 2011
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- guideline study
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 471 (Bacterial Reverse Mutation Assay)
- Version / remarks:
- 21 July 1997
- Deviations:
- no
- GLP compliance:
- no
- Remarks:
- The study was reported throughly and the lack of GLP certification is considered not to effect the reliability of the study result.
- Type of assay:
- bacterial reverse mutation assay
- Specific details on test material used for the study:
- Storage conditions: Room temperature
CPTC ID No.: MID-4853.01 - Target gene:
- Histidine locus
- Species / strain / cell type:
- S. typhimurium TA 97
- Species / strain / cell type:
- S. typhimurium TA 98
- Species / strain / cell type:
- S. typhimurium TA 100
- Species / strain / cell type:
- S. typhimurium TA 102
- Species / strain / cell type:
- S. typhimurium TA 1535
- Metabolic activation:
- with and without
- Metabolic activation system:
- Aroclor 1254 induced rat liver microsomes (S9)
- Test concentrations with justification for top dose:
- Test sample: 5.0, 1.0, 0.5, 0.1, 0.05 mg/plate (with and without metabolic activation).
- Vehicle / solvent:
- - Solvent: 2-Propanol
- Justification: The solubility ofthe test sample was tested in different solvents at 50 mg/mL concentration and found to
be soluble in 2-Propanol and was the solvent used to dissolve this test sample in the study. - Untreated negative controls:
- yes
- Negative solvent / vehicle controls:
- yes
- Positive controls:
- yes
- Positive control substance:
- sodium azide
- mitomycin C
- other: 2-aminoanthracene (w/S9), ICR 191 Acridine, Daunomycin
- Details on test system and experimental conditions:
- The bacterial reverse mutation assay was used to evaluate the mutagenic potential of the test sample at 5 concentrations of the test sample: 5.0, 1.0, 0.5, 0.1 and 0.05 mg. Testing was done with the appropriate solvent control and positive controls were plated with overnight cultures of the test systems (TA 97a, TA 98, TA 100, TA102, TA 1535) on selective minimal agar in the presence and absence ofAroclor-induced rat liver S9. All dose levels of the test sample, solvent controls and positive controls were plated in triplicate. (Refer to attachment A: Protocol M1 0-4853 for detailed test procedure).
- Rationale for test conditions:
- The Bacterial Reverse Mutation Assay is widely used to evaluate the mutagenic properties of chemicals.The test is based on the work of Dr. Bruce Ames and his coworkers and is commonly referred to as the Ames Test. Their studies involved the development of select histidine auxotrophs of S. typhimurium that are normally growth arrested due to mutations in a gene needed to produce the essential amino acid Histidine. in the absence of an external histidine source, the cells cannot grow to form colonies unless a reversion of the mutation occurs which allows the production of histidine to be resumed. As might be expected, Spontaneous reversions occur with each of the strains. However, chemical agents can induce a mutagenic response so that the number of revertant colonies is substantially higher than the spontaneous background reversion level. The test involves the analysis of the number of revertant colonies that are obtained with each strain in the presence and absence of the test chemical. Since the mutagenic response of a formulation could vary with the concentration, test articles are routinely dosed over an appropriate concentration range. in this-protocol, a complete set of positive and negative controls is included with each assay, and is plated routinely with all of the tester strains. AroclorTM 1254 induced rat liver microsomes are included to mimic the in viva activity of the liver enzymes in activating some pro-mutagens to mutagenic status.
- Evaluation criteria:
- Negative (solvent) Control Counts
The colonies that grew on the Minimal Glucose Agar plates developed from single cells that had regained their ability to grow in the absence of added histidine. The genetic reversion, from histidine auxotrophy to prototrophy, that enabled those cells to grow in the absence of exogenous histidine might have arisen spontaneously or as the result of a mutation induced by the treatments (see Maron & Ames, p. 181). It is important to realize that some of the colonies that arose in the positive control plates would have grown in the absence of treatment; they arose spontaneously. Accordingly, the negative (solvent) control colony counts constitute an important baseline in your evaluation of the test results. Unfortunately, the spontaneous reversion frequencies for the various tester strains can be quite variable - nevertheless, large deviations form the "normal" range of spontaneous reversion values may signal systematic problems with the assay. - Species / strain:
- S. typhimurium TA 97
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- not specified
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Species / strain:
- S. typhimurium TA 98
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- not specified
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Species / strain:
- S. typhimurium TA 100
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- not specified
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Species / strain:
- S. typhimurium TA 102
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- not specified
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Species / strain:
- S. typhimurium TA 1535
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- not specified
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Additional information on results:
- The results in Tables 1 and 2 show that the test strains were sensitive to the positive control mutagens and had a spontaneous reversion rate well within the accepted values of each strain, indicating that under the test conditions, the strains were sensitive to the detection of potentially genotoxic agents. Test sample M10-4853.01 was not cytotoxic to the test system. The metabolic activation using the S9 activation mixture shows an active microsomal preparation.
Using the same test conditions, there was no detectable genotoxic activity associated with the five concentrations (5.0, 1.0, 0.5, 0.1, 0.05 mg) of test sample M10-4853.01 (Hetester HCA Lot #: G30074 Tables 1 and 2) either in the presence or absence of S9 enzyme activation. - Conclusions:
- The test material failed to induce reverse mutation in any of the test concentrations and cell strains (Salmonella typhimurium) tested with and without metabolic activation.
- Executive summary:
In this guideline (OECD 471) study, conducted without GLP certification, the test material did not induce mutagenic effects in any of the test concentrations or cell strains used, with and without metabolic activation. The test was conducted at 0.05, 0.1, 0.5, 1.0, and 5.0 mg/plate. Salmonella typhimurium was chosen as the model using strains 97, 98, 100, 102, 1535 with and without metabolic activation (Aroclor induced rat liver S9 mix).
Reference
Endpoint conclusion
- Endpoint conclusion:
- no adverse effect observed (negative)
Genetic toxicity in vivo
Endpoint conclusion
- Endpoint conclusion:
- no study available
Additional information
Justification for classification or non-classification
The registered substance failed to induce statistically significant reverse mutations in the AMES test. The registered substance does not meet the mutagen criteria of the Classification, Labelling, and Packaging (CLP) regulation (1272/2008).
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.