Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 946-381-5 | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Endpoint summary
Administrative data
Description of key information
The substance was not irritant or corrosive to the skin in a GLP-compliant OECD 439 and 431 study.
The substance was not irritant to the eyes in a GLP-compliant OECD 437 study.
Key value for chemical safety assessment
Skin irritation / corrosion
Endpoint conclusion
- Endpoint conclusion:
- no adverse effect observed (not irritating)
Eye irritation
Endpoint conclusion
- Endpoint conclusion:
- no adverse effect observed (not irritating)
Respiratory irritation
Endpoint conclusion
- Endpoint conclusion:
- no study available
Additional information
Skin irritation/corrosion
The ability of the test substance to induce induce skin irritation on a human three dimensional epidermal model (EPISKIN Small model (EPISKIN-SMTM)) was evaluated in a GLP compliant study according to OECD 439 and EU B.46. The possible skin irritation potential of the test item was tested through topical application for 15 minutes. The test item was applied undiluted (25 µL), directly on top of the skin tissue for 15 ± 0.5 minutes. After a 42 hour post-incubation period, determination of the cytotoxic (irritancy) effect was performed. Cytotoxicity is expressed as the reduction of mitochondrial dehydrogenase activity measured by formazan production from MTT at the end of the treatment. Skin irritation is expressed as the remaining cell viability after exposure to the test item. The relative mean tissue viability obtained after 15 ± 0.5 minutes treatment with the test item compared to the negative control tissues was 83%. Since the mean relative tissue viability for the test item was above 50% after 15 ± 0.5 minutes treatment the test item is considered to be non-irritant. The positive control had a mean cell viability of 16% after 15 ± 0.5 minutes exposure. The absolute mean OD570(optical density at 570 nm) of the negative control tissues was within the laboratory historical control data range. The standard deviation value of the percentage viability of three tissues treated identically was less than 12%, indicating that the test system functioned properly. In conclusion, the test substance is non-irritant in the in vitro skin irritation test under the experimental conditions described.
The ability of the test substance to induce skin corrosion was evaluated in a GLP compliant study according to OECD 431 and EU B.40 BIS, using a human three dimensional epidermal model (EpiDerm (EPI-200)). The possible corrosive potential of the test substance was tested through topical application for 3 minutes and 1 hour. The test item was applied undiluted (50 μL) directly on top of the skin tissue. The positive control had a mean relative tissue viability of 6% after the 1-hour exposure. The absolute mean OD570 (optical density at 570 nm) of the negative control tissues was within the acceptance limits of OECD 431 (lower acceptance limit ≥0.8 and upper acceptance limit ≤ 2.8) and the laboratory historical control data range. In the range of 20 - 100% viability the Coefficient of Variation between tissue replicates was ≤ 14%, indicating that the test system functioned properly. Skin corrosion is expressed as the remaining cell viability after exposure to the test item. The relative mean tissue viability obtained after 3-minute and 1-hour treatments with the test item compared to the negative control tissues was 78% and 71%, respectively. Because the mean relative tissue viability for the test item was not below 50% after the 3-minute treatment and not below 15% after the 1-hour treatment the test item is considered to be not corrosive. In conclusion, the test substance is not corrosive in the in vitro skin corrosion test under the experimental conditions described.
Eye irritation
The eye hazard potential of the test substance was measured by its ability to induce opacity and increase permeability in an isolated bovine cornea in a GLP compliant study according to OECD 437. The eye damage of the test substance was tested through topical application for 10 minutes. The test item was applied as it is (750 μL) directly on top of the corneas. The negative control responses for opacity and permeability were less than the upper limits of the laboratory historical range indicating that the negative control did not induce irritancy on the corneas. The mean in vitro irritancy score of the positive control (Ethanol) was 64 and was within two standard deviations of the current historical positive control mean. It was therefore concluded that the test conditions were adequate and that the test system functioned properly. The test item did not induce ocular irritation through both endpoints, resulting in a mean in vitro irritancy score of -1.3 after 10 minutes of treatment. In conclusion, since the test substance induced an IVIS ≤ 3, no classification is required for eye irritation or serious eye damage.
Justification for classification or non-classification
Based on the available information classification for skin or eye irritation is not warranted in accordance with EU Classification, Labeling and Packaging of Substances and Mixtures (CLP) Regulation No. 1272/2008.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.

EU Privacy Disclaimer
This website uses cookies to ensure you get the best experience on our websites.