Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 203-223-3 | CAS number: 104-65-4
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Key value for chemical safety assessment
Genetic toxicity in vitro
Description of key information
Based on the prediction done using the OECD QSAR toolbox version 3.3 with log kow as the primary descriptor and considering the five closest read across substances, gene mutation was predicted for (2E)-3-phenylprop-2-en-1-yl formate. The study assumed the use of Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 with S9 metabolic activation system. (2E)-3-phenylprop-2-en-1-yl formate was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence of S9 metabolic activation system and hence, according to the prediction made, it is not likely to classify as a gene mutant in vitro.
Based on the predicted result it can be concluded that the substance is considered to be not toxic as per the criteria mentioned in CLP regulation.
Link to relevant study records
- Endpoint:
- in vitro gene mutation study in bacteria
- Remarks:
- Type of genotoxicity: gene mutation
- Type of information:
- (Q)SAR
- Adequacy of study:
- weight of evidence
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- results derived from a valid (Q)SAR model and falling into its applicability domain, with limited documentation / justification
- Justification for type of information:
- Data is from OECD QSAR Toolbox version 3.3 and the supporting QMRF report has been attcahed
- Qualifier:
- according to guideline
- Guideline:
- other: Refer below principle
- Principles of method if other than guideline:
- Prediction is done using OECD QSAR Toolbox version 3.3, 2017
- GLP compliance:
- not specified
- Type of assay:
- bacterial reverse mutation assay
- Specific details on test material used for the study:
- - Name of the test material: (2E)-3-phenylprop-2-en-1-yl formate
- IUPAC name: 2-phenylethyl pentanoate
- Molecular formula: C13H18O2
- Molecular weight: 206.283 g/mol
- Substance type: Organic
- Smiles: CCCCC(=O)OCCc1ccccc1 - Target gene:
- Histidine
- Species / strain / cell type:
- S. typhimurium TA 1535, TA 1537, TA 98, TA 100 and TA 102
- Details on mammalian cell type (if applicable):
- Not applicable
- Additional strain / cell type characteristics:
- not specified
- Cytokinesis block (if used):
- No data
- Metabolic activation:
- with
- Metabolic activation system:
- S9 metabolic activation system
- Test concentrations with justification for top dose:
- No data
- Vehicle / solvent:
- No data
- Untreated negative controls:
- not specified
- Negative solvent / vehicle controls:
- not specified
- True negative controls:
- not specified
- Positive controls:
- not specified
- Positive control substance:
- not specified
- Details on test system and experimental conditions:
- No data
- Rationale for test conditions:
- No data
- Evaluation criteria:
- Prediction is done considering a dose dependent increase in the number of revertants/plate
- Statistics:
- No data
- Species / strain:
- S. typhimurium, other: TA 1535, TA 1537, TA 98, TA 100 and TA 102
- Metabolic activation:
- with
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- not specified
- Vehicle controls validity:
- not specified
- Untreated negative controls validity:
- not specified
- Positive controls validity:
- not specified
- Additional information on results:
- No data
- Remarks on result:
- no mutagenic potential (based on QSAR/QSPR prediction)
- Conclusions:
- (2E)-3-phenylprop-2-en-1-yl formate was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence of S9 metabolic activation system and hence, according to the prediction made, it is not likely to classify as a gene mutant in vitro.
- Executive summary:
Based on the prediction done using the OECD QSAR toolbox version 3.3 with log kow as the primary descriptor and considering the five closest read across substances, gene mutation was predicted for (2E)-3-phenylprop-2-en-1-yl formate. The study assumed the use of Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 with S9 metabolic activation system. (2E)-3-phenylprop-2-en-1-yl formate was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence of S9 metabolic activation system and hence, according to the prediction made, it is not likely to classify as a gene mutant in vitro.
Based on the predicted result it can be concluded that the substance is considered to be not toxic as per the criteria mentioned in CLP regulation.
Reference
The
prediction was based on dataset comprised from the following
descriptors: "Gene mutation"
Estimation method: Takes highest mode value from the 11 nearest
neighbours
Domain logical expression:Result: In Domain
(((((((((((((("a"
or "b" or "c" )
and ("d"
and (
not "e")
)
)
and ("f"
and (
not "g")
)
)
and ("h"
and (
not "i")
)
)
and ("j"
and (
not "k")
)
)
and ("l"
and (
not "m")
)
)
and "n" )
and ("o"
and (
not "p")
)
)
and ("q"
and (
not "r")
)
)
and ("s"
and (
not "t")
)
)
and "u" )
and ("v"
and (
not "w")
)
)
and ("x"
and (
not "y")
)
)
and ("z"
and "aa" )
)
Domain
logical expression index: "a"
Referential
boundary: The
target chemical should be classified as Formic acid and formates by OECD
HPV Chemical Categories
Domain
logical expression index: "b"
Referential
boundary: The
target chemical should be classified as Class 3 (unspecific reactivity)
by Acute aquatic toxicity classification by Verhaar (Modified)
Domain
logical expression index: "c"
Referential
boundary: The
target chemical should be classified as Esters by Acute aquatic toxicity
MOA by OASIS
Domain
logical expression index: "d"
Referential
boundary: The
target chemical should be classified as No alert found by DNA binding by
OASIS v.1.3
Domain
logical expression index: "e"
Referential
boundary: The
target chemical should be classified as AN2 OR AN2 >> Michael-type
addition, quinoid structures OR AN2 >> Michael-type addition, quinoid
structures >> Flavonoids OR AN2 >> Michael-type addition, quinoid
structures >> Quinoneimines OR AN2 >> Michael-type addition, quinoid
structures >> Quinones OR AN2 >> Carbamoylation after isocyanate
formation OR AN2 >> Carbamoylation after isocyanate formation >>
Hydroxamic Acids OR AN2 >> Carbamoylation after isocyanate formation >>
N-Hydroxylamines OR AN2 >> Michael-type addition on alpha,
beta-unsaturated carbonyl compounds OR AN2 >> Michael-type addition on
alpha, beta-unsaturated carbonyl compounds >> Four- and Five-Membered
Lactones OR AN2 >> Nucleophilic addition to alpha, beta-unsaturated
carbonyl compounds OR AN2 >> Nucleophilic addition to alpha,
beta-unsaturated carbonyl compounds >> alpha, beta-Unsaturated Aldehydes
OR AN2 >> Nucleophilic addition to metabolically formed thioketenes OR
AN2 >> Nucleophilic addition to metabolically formed thioketenes >>
Haloalkene Cysteine S-Conjugates OR AN2 >> Schiff base formation OR AN2
>> Schiff base formation >> alpha, beta-Unsaturated Aldehydes OR AN2 >>
Schiff base formation >> Dicarbonyl compounds OR AN2 >> Schiff base
formation >> Halofuranones OR AN2 >> Schiff base formation >> Polarized
Haloalkene Derivatives OR AN2 >> Schiff base formation by aldehyde
formed after metabolic activation OR AN2 >> Schiff base formation by
aldehyde formed after metabolic activation >> Geminal Polyhaloalkane
Derivatives OR AN2 >> Shiff base formation after aldehyde release OR AN2
>> Shiff base formation after aldehyde release >> Specific Acetate
Esters OR AN2 >> Shiff base formation for aldehydes OR AN2 >> Shiff base
formation for aldehydes >> Geminal Polyhaloalkane Derivatives OR AN2 >>
Shiff base formation for aldehydes >> Haloalkane Derivatives with Labile
Halogen OR AN2 >> Thioacylation via nucleophilic addition after
cysteine-mediated thioketene formation OR AN2 >> Thioacylation via
nucleophilic addition after cysteine-mediated thioketene formation >>
Haloalkenes with Electron-Withdrawing Groups OR AN2 >> Thioacylation via
nucleophilic addition after cysteine-mediated thioketene formation >>
Polarized Haloalkene Derivatives OR Michael addition OR Michael addition
>> Quinone type compounds OR Michael addition >> Quinone type compounds
>> Quinone methides OR Non-covalent interaction OR Non-covalent
interaction >> DNA intercalation OR Non-covalent interaction >> DNA
intercalation >> Acridone, Thioxanthone, Xanthone and Phenazine
Derivatives OR Non-covalent interaction >> DNA intercalation >> Amino
Anthraquinones OR Non-covalent interaction >> DNA intercalation >>
Coumarins OR Non-covalent interaction >> DNA intercalation >> DNA
Intercalators with Carboxamide Side Chain OR Non-covalent interaction >>
DNA intercalation >> Fused-Ring Nitroaromatics OR Non-covalent
interaction >> DNA intercalation >> Fused-Ring Primary Aromatic Amines
OR Non-covalent interaction >> DNA intercalation >> Quinones OR
Non-covalent interaction >> DNA intercalation >> Triarylimidazole and
Structurally Related DNA Intercalators OR Non-specific OR Non-specific
>> Incorporation into DNA/RNA, due to structural analogy with
nucleoside bases OR Non-specific >> Incorporation into DNA/RNA, due
to structural analogy with nucleoside bases >> Specific Imine and
Thione Derivatives OR Radical OR Radical >> Generation of reactive
oxygen species OR Radical >> Generation of reactive oxygen species >>
Thiols OR Radical >> Generation of ROS by glutathione depletion
(indirect) OR Radical >> Generation of ROS by glutathione depletion
(indirect) >> Haloalkanes Containing Heteroatom OR Radical >> Radical
attack after one-electron reduction of diazonium cation OR Radical >>
Radical attack after one-electron reduction of diazonium cation >>
Arenediazonium Salts OR Radical >> Radical mechanism by ROS formation OR
Radical >> Radical mechanism by ROS formation (indirect) or direct
radical attack on DNA OR Radical >> Radical mechanism by ROS formation
(indirect) or direct radical attack on DNA >> Organic Peroxy Compounds
OR Radical >> Radical mechanism by ROS formation >> Acridone,
Thioxanthone, Xanthone and Phenazine Derivatives OR Radical >> Radical
mechanism by ROS formation >> Polynitroarenes OR Radical >> Radical
mechanism via ROS formation (indirect) OR Radical >> Radical mechanism
via ROS formation (indirect) >> Amino Anthraquinones OR Radical >>
Radical mechanism via ROS formation (indirect) >> C-Nitroso Compounds OR
Radical >> Radical mechanism via ROS formation (indirect) >> Conjugated
Nitro Compounds OR Radical >> Radical mechanism via ROS formation
(indirect) >> Coumarins OR Radical >> Radical mechanism via ROS
formation (indirect) >> Flavonoids OR Radical >> Radical mechanism via
ROS formation (indirect) >> Fused-Ring Nitroaromatics OR Radical >>
Radical mechanism via ROS formation (indirect) >> Fused-Ring Primary
Aromatic Amines OR Radical >> Radical mechanism via ROS formation
(indirect) >> Geminal Polyhaloalkane Derivatives OR Radical >> Radical
mechanism via ROS formation (indirect) >> Haloalcohols OR Radical >>
Radical mechanism via ROS formation (indirect) >> Hydrazine Derivatives
OR Radical >> Radical mechanism via ROS formation (indirect) >>
N-Hydroxylamines OR Radical >> Radical mechanism via ROS formation
(indirect) >> Nitro Azoarenes OR Radical >> Radical mechanism via ROS
formation (indirect) >> Nitroaniline Derivatives OR Radical >> Radical
mechanism via ROS formation (indirect) >> Nitroarenes with Other Active
Groups OR Radical >> Radical mechanism via ROS formation (indirect) >>
Nitrophenols, Nitrophenyl Ethers and Nitrobenzoic Acids OR Radical >>
Radical mechanism via ROS formation (indirect) >> p-Aminobiphenyl
Analogs OR Radical >> Radical mechanism via ROS formation (indirect) >>
p-Substituted Mononitrobenzenes OR Radical >> Radical mechanism via ROS
formation (indirect) >> Quinones OR Radical >> Radical mechanism via ROS
formation (indirect) >> Single-Ring Substituted Primary Aromatic Amines
OR Radical >> Radical mechanism via ROS formation (indirect) >> Specific
Imine and Thione Derivatives OR Radical >> ROS formation after GSH
depletion OR Radical >> ROS formation after GSH depletion (indirect) OR
Radical >> ROS formation after GSH depletion (indirect) >> Quinoneimines
OR Radical >> ROS formation after GSH depletion >> Quinone methides OR
SN1 OR SN1 >> Alkylation after metabolically formed carbenium ion
species OR SN1 >> Alkylation after metabolically formed carbenium ion
species >> Polycyclic Aromatic Hydrocarbon Derivatives OR SN1 >>
Carbenium ion formation OR SN1 >> Carbenium ion formation >>
Alpha-Haloethers OR SN1 >> Nucleophilic attack after carbenium ion
formation OR SN1 >> Nucleophilic attack after carbenium ion formation >>
Acyclic Triazenes OR SN1 >> Nucleophilic attack after carbenium ion
formation >> N-Nitroso Compounds OR SN1 >> Nucleophilic attack after
carbenium ion formation >> Pyrrolizidine Derivatives OR SN1 >>
Nucleophilic attack after carbenium ion formation >> Specific Acetate
Esters OR SN1 >> Nucleophilic attack after diazonium or carbenium ion
formation OR SN1 >> Nucleophilic attack after diazonium or carbenium ion
formation >> Nitroarenes with Other Active Groups OR SN1 >> Nucleophilic
attack after metabolic nitrenium ion formation OR SN1 >> Nucleophilic
attack after metabolic nitrenium ion formation >> Amino Anthraquinones
OR SN1 >> Nucleophilic attack after metabolic nitrenium ion formation >>
Fused-Ring Primary Aromatic Amines OR SN1 >> Nucleophilic attack after
metabolic nitrenium ion formation >> N-Hydroxylamines OR SN1 >>
Nucleophilic attack after metabolic nitrenium ion formation >>
p-Aminobiphenyl Analogs OR SN1 >> Nucleophilic attack after metabolic
nitrenium ion formation >> Single-Ring Substituted Primary Aromatic
Amines OR SN1 >> Nucleophilic attack after nitrenium and/or carbenium
ion formation OR SN1 >> Nucleophilic attack after nitrenium and/or
carbenium ion formation >> N-Nitroso Compounds OR SN1 >> Nucleophilic
attack after reduction and nitrenium ion formation OR SN1 >>
Nucleophilic attack after reduction and nitrenium ion formation >>
Conjugated Nitro Compounds OR SN1 >> Nucleophilic attack after reduction
and nitrenium ion formation >> Fused-Ring Nitroaromatics OR SN1 >>
Nucleophilic attack after reduction and nitrenium ion formation >> Nitro
Azoarenes OR SN1 >> Nucleophilic attack after reduction and nitrenium
ion formation >> Nitroaniline Derivatives OR SN1 >> Nucleophilic attack
after reduction and nitrenium ion formation >> Nitroarenes with Other
Active Groups OR SN1 >> Nucleophilic attack after reduction and
nitrenium ion formation >> Nitrobiphenyls and Bridged Nitrobiphenyls OR
SN1 >> Nucleophilic attack after reduction and nitrenium ion formation
>> Nitrophenols, Nitrophenyl Ethers and Nitrobenzoic Acids OR SN1 >>
Nucleophilic attack after reduction and nitrenium ion formation >>
Polynitroarenes OR SN1 >> Nucleophilic attack after reduction and
nitrenium ion formation >> p-Substituted Mononitrobenzenes OR SN1 >>
Nucleophilic substitution after glutathione-induced nitrenium ion
formation OR SN1 >> Nucleophilic substitution after glutathione-induced
nitrenium ion formation >> C-Nitroso Compounds OR SN1 >> Nucleophilic
substitution on diazonium ions OR SN1 >> Nucleophilic substitution on
diazonium ions >> Specific Imine and Thione Derivatives OR SN1 >> SN1
reaction at nitrogen-atom bound to a good leaving group or on nitrenium
ion OR SN1 >> SN1 reaction at nitrogen-atom bound to a good leaving
group or on nitrenium ion >> N-Acyloxy(Alkoxy) Arenamides OR SN2 OR SN2
>> Acylation OR SN2 >> Acylation >> Hydroxamic Acids OR SN2 >> Acylation
>> Specific Acetate Esters OR SN2 >> Acylation involving a leaving group
OR SN2 >> Acylation involving a leaving group >> Geminal
Polyhaloalkane Derivatives OR SN2 >> Acylation involving a leaving group
>> Haloalkane Derivatives with Labile Halogen OR SN2 >> Acylation
involving a leaving group after metabolic activation OR SN2 >> Acylation
involving a leaving group after metabolic activation >> Geminal
Polyhaloalkane Derivatives OR SN2 >> Alkylation by epoxide metabolically
formed after E2 reaction OR SN2 >> Alkylation by epoxide metabolically
formed after E2 reaction >> Haloalcohols OR SN2 >> Alkylation, direct
acting epoxides and related OR SN2 >> Alkylation, direct acting epoxides
and related >> Epoxides and Aziridines OR SN2 >> Alkylation, direct
acting epoxides and related after cyclization OR SN2 >> Alkylation,
direct acting epoxides and related after cyclization >> Nitrogen
Mustards OR SN2 >> Alkylation, direct acting epoxides and related after
P450-mediated metabolic activation OR SN2 >> Alkylation, direct acting
epoxides and related after P450-mediated metabolic activation >>
Haloalkenes with Electron-Withdrawing Groups OR SN2 >> Alkylation,
direct acting epoxides and related after P450-mediated metabolic
activation >> Polycyclic Aromatic Hydrocarbon Derivatives OR SN2 >>
Alkylation, nucleophilic substitution at sp3-carbon atom OR SN2 >>
Alkylation, nucleophilic substitution at sp3-carbon atom >> Haloalkane
Derivatives with Labile Halogen OR SN2 >> Alkylation, nucleophilic
substitution at sp3-carbon atom >> Sulfonates and Sulfates OR SN2 >>
Alkylation, ring opening SN2 reaction OR SN2 >> Alkylation, ring opening
SN2 reaction >> Four- and Five-Membered Lactones OR SN2 >> Direct acting
epoxides formed after metabolic activation OR SN2 >> Direct acting
epoxides formed after metabolic activation >> Coumarins OR SN2 >> Direct
acting epoxides formed after metabolic activation >> Quinoline
Derivatives OR SN2 >> Direct acylation involving a leaving group OR SN2
>> Direct acylation involving a leaving group >> Acyl Halides OR SN2 >>
Direct nucleophilic attack on diazonium cation OR SN2 >> Direct
nucleophilic attack on diazonium cation >> Arenediazonium Salts OR SN2
>> DNA alkylation OR SN2 >> DNA alkylation >> Vicinal Dihaloalkanes OR
SN2 >> Internal SN2 reaction with aziridinium and/or cyclic sulfonium
ion formation (enzymatic) OR SN2 >> Internal SN2 reaction with
aziridinium and/or cyclic sulfonium ion formation (enzymatic) >> Vicinal
Dihaloalkanes OR SN2 >> Nucleophilic substitution at sp3 Carbon atom OR
SN2 >> Nucleophilic substitution at sp3 Carbon atom >> Haloalkanes
Containing Heteroatom OR SN2 >> Nucleophilic substitution at sp3 Carbon
atom >> Halofuranones OR SN2 >> Nucleophilic substitution at sp3 Carbon
atom >> Specific Acetate Esters OR SN2 >> Nucleophilic substitution at
sp3 carbon atom after thiol (glutathione) conjugation OR SN2 >>
Nucleophilic substitution at sp3 carbon atom after thiol (glutathione)
conjugation >> Geminal Polyhaloalkane Derivatives OR SN2 >> SN2 at an
activated carbon atom OR SN2 >> SN2 at an activated carbon atom >>
Quinoline Derivatives OR SN2 >> SN2 at Nitrogen Atom OR SN2 >> SN2 at
Nitrogen Atom >> N-acetoxyamines OR SN2 >> SN2 at sp3 and activated sp2
carbon atom OR SN2 >> SN2 at sp3 and activated sp2 carbon atom >>
Polarized Haloalkene Derivatives OR SN2 >> SN2 at sp3-carbon atom OR SN2
>> SN2 at sp3-carbon atom >> Alpha-Haloethers OR SN2 >> SN2 attack on
activated carbon Csp3 or Csp2 OR SN2 >> SN2 attack on activated carbon
Csp3 or Csp2 >> Nitroarenes with Other Active Groups OR SN2 >> SN2
reaction at nitrogen-atom bound to a good leaving group OR SN2 >> SN2
reaction at nitrogen-atom bound to a good leaving group >>
N-Acetoxyamines OR SN2 >> SN2 reaction at nitrogen-atom bound to a good
leaving group or nitrenium ion OR SN2 >> SN2 reaction at nitrogen-atom
bound to a good leaving group or nitrenium ion >> N-Acyloxy(Alkoxy)
Arenamides by DNA binding by OASIS v.1.3
Domain
logical expression index: "f"
Referential
boundary: The
target chemical should be classified as No alert found by DNA binding by
OECD
Domain
logical expression index: "g"
Referential
boundary: The
target chemical should be classified as Acylation OR Acylation >>
Isocyanates and Isothiocyanates OR Acylation >> Isocyanates and
Isothiocyanates >> Isocyanates OR Acylation >> Isocyanates and
Isothiocyanates >> Isothiocyanates OR Acylation >> P450 Mediated
Activation to Isocyanates or Isothiocyanates OR Acylation >> P450
Mediated Activation to Isocyanates or Isothiocyanates >> Formamides OR
Michael addition OR Michael addition >> P450 Mediated Activation of
Heterocyclic Ring Systems OR Michael addition >> P450 Mediated
Activation of Heterocyclic Ring Systems >> Furans OR Michael addition >>
P450 Mediated Activation to Quinones and Quinone-type Chemicals OR
Michael addition >> P450 Mediated Activation to Quinones and
Quinone-type Chemicals >> Alkyl phenols OR Michael addition >> P450
Mediated Activation to Quinones and Quinone-type Chemicals >> Arenes OR
Michael addition >> P450 Mediated Activation to Quinones and
Quinone-type Chemicals >> Hydroquinones OR Michael addition >> P450
Mediated Activation to Quinones and Quinone-type Chemicals >>
Methylenedioxyphenyl OR Michael addition >> P450 Mediated Activation to
Quinones and Quinone-type Chemicals >> Polycyclic (PAHs) and
heterocyclic (HACs) aromatic hydrocarbons-Michael addition OR Michael
addition >> Polarised Alkenes-Michael addition OR Michael addition >>
Polarised Alkenes-Michael addition >> Alpha, beta- unsaturated aldehydes
OR Michael addition >> Polarised Alkenes-Michael addition >> Alpha,
beta- unsaturated amides OR Michael addition >> Polarised
Alkenes-Michael addition >> Alpha, beta- unsaturated esters OR Michael
addition >> Polarised Alkenes-Michael addition >> Alpha, beta-
unsaturated ketones OR Michael addition >> Quinones and Quinone-type
Chemicals OR Michael addition >> Quinones and Quinone-type Chemicals >>
Quinones OR Schiff base formers OR Schiff base formers >> Chemicals
Activated by P450 to Glyoxal OR Schiff base formers >> Chemicals
Activated by P450 to Glyoxal >> Ethylenediamines (including piperazine)
OR Schiff base formers >> Direct Acting Schiff Base Formers OR Schiff
base formers >> Direct Acting Schiff Base Formers >>
Alpha-beta-dicarbonyl OR Schiff base formers >> Direct Acting Schiff
Base Formers >> Mono aldehydes OR SN1 OR SN1 >> Carbenium Ion Formation
OR SN1 >> Carbenium Ion Formation >> Aliphatic N-Nitro OR SN1 >>
Carbenium Ion Formation >> Allyl benzenes OR SN1 >> Carbenium Ion
Formation >> Polycyclic (PAHs) and heterocyclic (HACs) aromatic
hydrocarbons-SN1 OR SN1 >> Iminium Ion Formation OR SN1 >> Iminium Ion
Formation >> Aliphatic tertiary amines OR SN1 >> Nitrenium Ion formation
OR SN1 >> Nitrenium Ion formation >> Aromatic azo OR SN1 >> Nitrenium
Ion formation >> Aromatic nitro OR SN1 >> Nitrenium Ion formation >>
Primary (unsaturated) heterocyclic amine OR SN1 >> Nitrenium Ion
formation >> Primary aromatic amine OR SN1 >> Nitrenium Ion formation >>
Secondary (unsaturated) heterocyclic amine OR SN1 >> Nitrenium Ion
formation >> Secondary aromatic amine OR SN1 >> Nitrenium Ion formation
>> Tertiary (unsaturated) heterocyclic amine OR SN1 >> Nitrenium Ion
formation >> Tertiary aromatic amine OR SN1 >> Nitrenium Ion formation
>> Unsaturated heterocyclic nitro OR SN1 >> Nitrenium Ion formation >>
Unsaturated heterocyclic phenylureas OR SN2 OR SN2 >> Epoxidation of
Aliphatic Alkenes OR SN2 >> Epoxidation of Aliphatic Alkenes >>
Halogenated polarised alkenes OR SN2 >> SN2 at an sp3 Carbon atom OR SN2
>> SN2 at an sp3 Carbon atom >> Aliphatic halides OR SN2 >> SN2 at an
sp3 Carbon atom >> Sulfonates by DNA binding by OECD
Domain
logical expression index: "h"
Referential
boundary: The
target chemical should be classified as Non binder, without OH or NH2
group by Estrogen Receptor Binding
Domain
logical expression index: "i"
Referential
boundary: The
target chemical should be classified as Moderate binder, OH grooup OR
Non binder, impaired OH or NH2 group OR Non binder, MW>500 OR Non
binder, non cyclic structure OR Strong binder, NH2 group OR Strong
binder, OH group OR Very strong binder, OH group OR Weak binder, OH
group by Estrogen Receptor Binding
Domain
logical expression index: "j"
Referential
boundary: The
target chemical should be classified as No alert found by Protein
binding by OASIS v1.3
Domain
logical expression index: "k"
Referential
boundary: The
target chemical should be classified as Acylation OR Acylation >> Direct
acylation involving a leaving group OR Acylation >> Direct acylation
involving a leaving group >> (Thio)Acyl and (thio)carbamoyl halides and
cyanides OR Acylation >> Direct acylation involving a leaving group >>
Anhydrides (sulphur analogues of anhydrides) OR Acylation >> Direct
acylation involving a leaving group >> Azlactones and unsaturated
lactone derivatives OR Acylation >> Direct acylation involving a
leaving group >> Carbamates OR Acylation >> Direct acylation involving
a leaving group >> N-Acylsulfonamides OR Acylation >> Ester aminolysis
OR Acylation >> Ester aminolysis >> Amides OR Acylation >> Ester
aminolysis or thiolysis OR Acylation >> Ester aminolysis or thiolysis >>
Activated aryl esters OR Acylation >> Ring opening acylation OR
Acylation >> Ring opening acylation >> Active cyclic agents OR Michael
Addition OR Michael Addition >> Michael addition on conjugated systems
with electron withdrawing group OR Michael Addition >> Michael addition
on conjugated systems with electron withdrawing group >>
alpha,beta-Carbonyl compounds with polarized double bonds OR Michael
Addition >> Michael addition on conjugated systems with electron
withdrawing group >> Conjugated systems with electron withdrawing groups
OR Michael Addition >> Michael addition on conjugated systems with
electron withdrawing group >> Cyanoalkenes OR Michael Addition >>
Quinoide type compounds OR Michael Addition >> Quinoide type compounds
>> Quinone methide(s)/imines; Quinoide oxime structure; Nitroquinones,
Naphthoquinone(s)/imines OR Michael Addition >> Quinone type chemicals
OR Michael Addition >> Quinone type chemicals >> Pyranones, Pyridones
(and related nitrogen chemicals) OR Nucleophilic addition OR
Nucleophilic addition >> Addition to carbon-hetero double bonds OR
Nucleophilic addition >> Addition to carbon-hetero double bonds >>
Ketones OR Schiff base formation OR Schiff base formation >> Direct
acting Schiff base formers OR Schiff base formation >> Direct acting
Schiff base formers >> 1,2-Dicarbonyls and 1,3-Dicarbonyls OR Schiff
base formation >> Direct acting Schiff base formers >> Di-substituted
alpha,beta-unsaturated aldehydes OR Schiff base formation >>
Pyrazolones and Pyrazolidinones derivatives OR Schiff base formation >>
Pyrazolones and Pyrazolidinones derivatives >> Pyrazolones and
Pyrazolidinones OR Schiff base formation >> Schiff base formation with
carbonyl compounds OR Schiff base formation >> Schiff base formation
with carbonyl compounds >> Aldehydes OR SN2 OR SN2 >> Interchange
reaction with sulphur containing compounds OR SN2 >> Interchange
reaction with sulphur containing compounds >> Thiols and disulfide
compounds OR SN2 >> Nucleophilic substitution at sp3 carbon atom OR SN2
>> Nucleophilic substitution at sp3 carbon atom >> Alkyl halides OR SN2
>> Nucleophilic substitution at sp3 carbon atom >> alpha-Activated
haloalkanes OR SN2 >> Nucleophilic substitution on benzilyc carbon atom
OR SN2 >> Nucleophilic substitution on benzilyc carbon atom >>
alpha-Activated benzyls OR SN2 >> SN2 Reaction at a sp3 carbon atom OR
SN2 >> SN2 Reaction at a sp3 carbon atom >> Activated alkyl esters and
thioesters OR SNVinyl OR SNVinyl >> SNVinyl at a vinylic (sp2) carbon
atom OR SNVinyl >> SNVinyl at a vinylic (sp2) carbon atom >> Vinyl type
compounds with electron withdrawing groups by Protein binding by OASIS
v1.3
Domain
logical expression index: "l"
Referential
boundary: The
target chemical should be classified as No alert found by Protein
binding by OECD
Domain
logical expression index: "m"
Referential
boundary: The
target chemical should be classified as Acylation OR Acylation >> Direct
Acylation Involving a Leaving group OR Acylation >> Direct Acylation
Involving a Leaving group >> Acetates OR Michael addition OR Michael
addition >> Quinones and Quinone-type Chemicals OR Michael addition >>
Quinones and Quinone-type Chemicals >> Pyranones (and related nitrogen
chemicals) OR SN2 OR SN2 >> SN2 reaction at sp3 carbon atom OR SN2 >>
SN2 reaction at sp3 carbon atom >> Allyl acetates and related chemicals
OR SNAr OR SNAr >> Nucleophilic aromatic substitution OR SNAr >>
Nucleophilic aromatic substitution >> Activated halo-benzenes by Protein
binding by OECD
Domain
logical expression index: "n"
Referential
boundary: The
target chemical should be classified as No superfragment by
Superfragments ONLY
Domain
logical expression index: "o"
Referential
boundary: The
target chemical should be classified as No alert found by
Carcinogenicity (genotox and nongenotox) alerts by ISS
Domain
logical expression index: "p"
Referential
boundary: The
target chemical should be classified as Alkylbenzenes (Genotox) OR
alpha,beta-unsaturated carbonyls (Genotox) OR Aromatic ring N-oxide
(Genotox) OR Halogenated benzene (Nongenotox) OR Heterocyclic Polycyclic
Aromatic Hydrocarbons (Genotox) OR Hydrazine (Genotox) OR Imidazole,
benzimidazole (Nongenotox) OR Indole-3-carbinol (Nongenotox) OR Phtalate
(or buthyl) diesters and monoesters (Nongenotox) OR Simple aldehyde
(Genotox) OR Structural alert for genotoxic carcinogenicity OR
Structural alert for nongenotoxic carcinogenicity OR Structural alerts
for both genotoxic and nongenotoxic carcinogenicity OR Substituted
n-alkylcarboxylic acids (Nongenotox) OR Substituted phenoxyacid
(Nongenotox) by Carcinogenicity (genotox and nongenotox) alerts by ISS
Domain
logical expression index: "q"
Referential
boundary: The
target chemical should be classified as H-acceptor-path3-H-acceptor by
in vivo mutagenicity (Micronucleus) alerts by ISS
Domain
logical expression index: "r"
Referential
boundary: The
target chemical should be classified as 1-phenoxy-benzene OR No alert
found by in vivo mutagenicity (Micronucleus) alerts by ISS
Domain
logical expression index: "s"
Referential
boundary: The
target chemical should be classified as No alert found by Protein
binding alerts for Chromosomal aberration by OASIS v1.1
Domain
logical expression index: "t"
Referential
boundary: The
target chemical should be classified as AN2 OR AN2 >> Michael addition
to alpha, beta-unsaturated acids and esters OR AN2 >> Michael addition
to alpha, beta-unsaturated acids and esters >> alpha, beta - Unsaturated
Carboxylic Acids and Esters by Protein binding alerts for Chromosomal
aberration by OASIS v1.1
Domain
logical expression index: "u"
Referential
boundary: The
target chemical should be classified as Bioavailable by Lipinski Rule
Oasis ONLY
Domain
logical expression index: "v"
Referential
boundary: The
target chemical should be classified as Non-Metals by Groups of elements
Domain
logical expression index: "w"
Referential
boundary: The
target chemical should be classified as Halogens by Groups of elements
Domain
logical expression index: "x"
Referential
boundary: The
target chemical should be classified as Group 14 - Carbon C AND Group 16
- Oxygen O by Chemical elements
Domain
logical expression index: "y"
Referential
boundary: The
target chemical should be classified as Group 15 - Nitrogen N OR Group
16 - Sulfur S by Chemical elements
Domain
logical expression index: "z"
Parametric
boundary:The
target chemical should have a value of log Kow which is >= 1.66
Domain
logical expression index: "aa"
Parametric
boundary:The
target chemical should have a value of log Kow which is <= 3.69
Endpoint conclusion
- Endpoint conclusion:
- no adverse effect observed (negative)
Genetic toxicity in vivo
Endpoint conclusion
- Endpoint conclusion:
- no study available
Additional information
Gene mutation in vitro:
Prediction model based estimation and data from read across chemicals have been reviewed to determine the mutagenic nature of (2E)-3-phenylprop-2-en-1-yl formate. The studies are as mentioned below:
Based on the prediction done using the OECD QSAR toolbox version 3.3 with log kow as the primary descriptor and considering the five closest read across substances, gene mutation was predicted for (2E)-3-phenylprop-2-en-1-yl formate. The study assumed the use of Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 with and without S9 metabolic activation system. (2E)-3-phenylprop-2-en-1-yl formate was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence and absence of S9 metabolic activation system and hence, according to the prediction made, it is not likely to classify as a gene mutant in vitro.
Gene mutation toxicity was predicted for (2E)-3-phenylprop-2-en-1-yl formate using the battery approach from Danish QSAR database (2017). The study assumed the use of Salmonella typhimurium bacteria in the Ames test. The end point for gene mutation has been modeled in the Danish QSAR using the three software systems Leadscope, CASE Ultra and SciQSAR. Based on predictions from these three systems, a fourth and overall battery prediction is made. The battery prediction is made using the so called Battery algorithm. With the battery approach it is in many cases possible to reduce “noise” from the individual model estimates and thereby improve accuracy and/or broaden the applicability domain. Gene mutation toxicity study as predicted by Danish QSAR for(2E)-3-phenylprop-2-en-1-yl formateis negative and hence the chemical is predicted to not classify as a gene mutant in vitro.
The ability of (2E)-3-phenylprop-2-en-1-yl formate to induce chromosomal aberration was predicted using Chinese hamster lung (CHL) cells using Danish QSAR database (2017). The end point for chromosome aberrations has been modeled in the Danish QSAR using the three software systems Leadscope, CASE Ultra and SciQSAR. Based on predictions from these three systems, a fourth and overall battery prediction is made. The battery prediction is made using the so called Battery algorithm. With the battery approach it is in many cases possible to reduce “noise” from the individual model estimates and thereby improve accuracy and/or broaden the applicability domain. (2E)-3-phenylprop-2-en-1-yl formate does not induce chromosome aberrations in Chinese hamster lung (CHL) cells and hence is predicted to not classify as a gene mutant in vitro.
In a study for 85% structurally and functionally similar read across chemical by Ishidate et al (Food and chemical toxicology, 1984), Gene mutation toxicity study was performed to determine the mutagenic nature of ethyl cinnamate (RA CAS no 103 -36 -6; IUPAC name: ethyl (2E)-3-phenylprop-2-enoate). The study was performed using S. typhimurium strains TA92, TA1535, TA100, TA1537, TA94 and TA98 with and without S9 metabolic activation system. The test was performed as per the preincubation assay at six different concentrations with 5.0 mg/plate being the maximum concentration. The chemical was dissolved in DMSO. Preincubation was performed for 20 mins and the exposure duration was for 48 hrs. The result was considered positive if the number of colonies found was twice the number in the control (exposed to the appropriate solvent or untreated). Ethyl cinnamate did not induce a doubling of revertant colonies over the control using S. typhimurium strains TA92, TA1535, TA100, TA1537, TA94 and TA98 in the presence and absence of S9 metabolic activation system and hence the chemical is not likely to classify as a gene mutant in vitro.
In another study, 60 -70% structurally similar read across chemical Allyl cinnamate (RA CAS no 1866 -31 -5; IUPAC name: prop-2-en-1-yl (2E)-3-phenylprop-2-enoate), an artificial flavouring substance in food products was studied by Wild et al (Food and chemical toxicology, 1983) for mutagenic properties by the use of the Salmonella/mammalian microsome test (Ames test). The test was performed by plate incorporation method at 5 different dosesupto 3600 µg/plate using Salmonella typhimurium TA98, TA100, TA1535, TA1537, TA1538 with and without S9 metabolic activation system and the plates were incubated for 48hrs. Concurrent positive control chemicals were incorporated in the study. A reproducible, dose-related and at least two-fold elevation of the spontaneous revertant frequency. Agents producing reproducible, dose-related and significant (P≤0.01) but less than two-fold elevations were classified as marginally mutagenic under the experimental conditions. Allyl cinnamate did not cause a reproducible, dose-related and at least two-fold elevation of the spontaneous revertant frequency and hence the chemical is not mutagenic in the Salmonella/microsome AMES test performed using Salmonella typhimurium TA98, TA100, TA1535, TA1537, TA1538 in the presence and absence of S9 metabolic activation system.
Based on the data available for the target chemical and its read across, (2E)-3-phenylprop-2-en-1-yl formate does not exhibit gene mutation in vitro. Hence the test chemical is not likely to classify as a gene mutant as per the criteria mentioned in CLP regulation.
Justification for classification or non-classification
Based on the data available for the target chemical and its read across, (2E)-3-phenylprop-2-en-1-yl formate (CAS no 104 -65 -4) does not exhibit gene mutation in vitro. Hence the test chemical is not likely to classify as a gene mutant as per the criteria mentioned in CLP regulation.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.