Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 946-191-2 | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Surface tension
Administrative data
Link to relevant study record(s)
- Endpoint:
- surface tension
- Type of information:
- read-across from supporting substance (structural analogue or surrogate)
- Adequacy of study:
- key study
- Justification for type of information:
- REPORTING FORMAT FOR THE ANALOGUE APPROACH
see "General Justification for Read-Across" attached to IUCLID section 13
1. HYPOTHESIS FOR THE ANALOGUE APPROACH
Mutual read across from the AAPBs to one another is justified:
a) Based on the information given in section 1, it can be concluded that all AAPBs mentioned above are similar in structure, since they are manufactured from similar resp. identical precursors under similar conditions and all contain the same functional groups. Thus a common mode of action can be assumed.
b) The content of minor constituents in all products are comparable and differ to an irrelevant amount.
c) The only deviation within this group of substances is a minor variety in their fatty acid moiety, which is not expected to have a relevant impact on intrinsic toxic or ecotoxic activity and environmental fate. Potential minor impact on specific endpoints will be discussed in the specific endpoint sections.
The read-across hypothesis is based on structural similarity of target and source substances. Based on the available experimental data, including key physico-chemical properties and data from toxicokinetic, acute toxicity, irritation, sensitisation, genotoxicity and repeated dose toxicity studies, the read-across strategy is supported by a quite similar toxicological profile of all five substances.
The respective data are summarised in the data matrix; robust study summaries are included in the Technical Dossier in the respective sections.
2. SOURCE AND TARGET CHEMICAL(S) (INCLUDING INFORMATION ON PURITY AND IMPURITIES)
see "General Justification for Read-Across" attached to IUCLID section 13
3. ANALOGUE APPROACH JUSTIFICATION
see "General Justification for Read-Across" attached to IUCLID section 13
4. DATA MATRIX
see "General Justification for Read-Across" attached to IUCLID section 13 - Reason / purpose for cross-reference:
- read-across: supporting information
- Reason / purpose for cross-reference:
- read-across source
- Reason / purpose for cross-reference:
- read-across source
- Type of method:
- plate method
- Surface tension:
- 30.9 mN/m
- Temp.:
- 20 °C
- Conc.:
- 1 g/L
Reference
Description of key information
surface tension of C8-18 AAPB: 30.9 ± 0.2 mN/m at 20°C
surface tension of C12 AAPB: 32.0 ± 0.2 mN/m at 20°C
Key value for chemical safety assessment
- Surface tension:
- 30.9
- in mN/m at 20°C and concentration in mg/L:
- 1 000
Additional information
In studies conducted according to DIN EN 14370 (Wilhelmy plate method), the surface tensions of C8 -18 AAPB and C12 AAPB were determined to be 30.9 ± 0.2 mN/m and 32.0 ± 0.2 mN/m at 20°C, respectively. All AAPBs are similar in structure, contain all the same zwitterionic structure. They differ, however, by their carbon chain length distribution and the degree of unsaturation (<=20%) in the fatty acid moiety. The content of minor constituents in all products are comparable and differ to an irrelevant amount. Based on the available data, it can be assumed that chain length distribution and degree of unsaturation of the fatty acid chain have a minor impact on this endpoint.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.