Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 235-227-6 | CAS number: 12136-45-7
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Dermal absorption
Administrative data
- Endpoint:
- dermal absorption in vivo
- Type of information:
- (Q)SAR
- Adequacy of study:
- weight of evidence
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- results derived from a valid (Q)SAR model and falling into its applicability domain, with adequate and reliable documentation / justification
- Justification for type of information:
- QSAR prediction:US EPA accepted QSAR method for chemicals properties assessment.
Data source
Reference
- Reference Type:
- other: QSAR model
- Title:
- EPI Suite v 4.1/DERMWIN v2.01
- Author:
- US EPA
- Year:
- 2 014
- Bibliographic source:
- http://epa.gov/oppt/exposure/pubs/episuite.htm
Materials and methods
Test guideline
- Qualifier:
- no guideline required
- Principles of method if other than guideline:
- Using the DERMWIN v2.01 QSAR model
- GLP compliance:
- no
- Remarks:
- not applicable to QSAR models
Test material
- Reference substance name:
- Dipotassium oxide
- EC Number:
- 235-227-6
- EC Name:
- Dipotassium oxide
- Cas Number:
- 12136-45-7
- Molecular formula:
- K2O
- IUPAC Name:
- Potassium oxide
- Details on test material:
- -Name of test material (as cited in study report:Potassium oxideCAS Number: 12136-45-7SMILES : KOKCHEM : Potash (potassium oxide)MOL FOR: O1 K2 MOL WT : 94.20
Constituent 1
- Radiolabelling:
- no
Test animals
- Species:
- other: QSAR model,
- Strain:
- other: QSAR model,
- Sex:
- not specified
Administration / exposure
- Type of coverage:
- other: QSAR model
- Vehicle:
- other: QSAR model
- Duration of exposure:
- not applicable to QSAR models
- Doses:
- not applicable to QSAR models
- No. of animals per group:
- not applicable to QSAR models
- Control animals:
- no
- Details on study design:
- not applicable to QSAR models
- Details on in vitro test system (if applicable):
- not applicable to QSAR models
Results and discussion
- Signs and symptoms of toxicity:
- not specified
- Dermal irritation:
- not specified
- Absorption in different matrices:
- A QSAR model predicts that the permeability of Dipotassium oxide to human skin is quite low. The permeability coefficient was determined to be
0.000247 mg/cm2, which is around 1% of the skin penetration rate.
Predicted dermally absorbed coefficient was determined to be Kp (est)=1.96e-007 cm/hr.
Any other information on results incl. tables
A QSAR model predicts that the permeability of Dipotassium oxide to human skin is quite low. The permeability coefficient was determined to be 0.000247 mg/cm2, which is around 1% of the skin penetration rate.
Predicted dermally absorbed coefficient was determined to be Kp (est)=1.96e-007 cm/hr.
Applicant's summary and conclusion
- Conclusions:
- A QSAR model predicts that the permeability of Dipotassium oxide to human skin is quite low. The permeability coefficient was determined to be
0.000247 mg/cm2, which is around 1% of the skin penetration rate.
Predicted dermally absorbed coefficient was determined to be Kp (est)=1.96e-007 cm/hr. - Executive summary:
A QSAR model predicts that the permeability of Dipotassium oxide to human skin is quite low. The permeability coefficient was determined to be 0.000247 mg/cm2, which is around 1% of the skin penetration rate.
Predicted dermally absorbed coefficient was determined to be Kp (est)=1.96e-007 cm/hr.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.