Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 202-049-5 | CAS number: 91-20-3
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Biodegradation in water: screening tests
Administrative data
Link to relevant study record(s)
Description of key information
Non-standard biodegradation tests and a ready-biodegradation test conducted under aerobic conditions clearly showed that naphthalene is easily or even readily biodegradable. Under this premise, a negative result obtained under MITI(II) conditions is considered to be invalid.
Key value for chemical safety assessment
- Biodegradation in water:
- inherently biodegradable
Additional information
Rapid biodegradation in water occurred especially in those tests in which aerobic or denitrifying conditions were predominant and microorganisms already acclimated to the exposed substances. After a short lag period (1.2 – 12 days) naphthalene was extensively degraded within 5 – 15 days.
Apparently contradicting results have been found in two standardised tests: In a MITI-II test for inherent biodegradability similar to OECD TG 302C performed under the Japanese Chemical Inspection & Testing Institute, no biodegradation of the test substance naphthalene was observed (2% degradation within 4 weeks). This officially published negative result is conflicting with a positive finding obtained under MITI(I) conditions by the Mitsubishi-Kasai Institute (Yoshida et al. 1983).
That poor outcome in the MITI(II) test can be explained by the stringent, negative-selective pre-treatment of the natural microflora for the preparation of the inoculum, a procedure that favours the loss of indigenous potent micro-organisms for special properties of decomposition.
Given this, it can be concluded that the MITI(II) test produced a false-negative result, while naphthalene is rapidly/easily biodegradable most of the time, at least inherently biodegradable under less favorable conditions.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.