Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Environmental fate & pathways

Endpoint summary

Administrative data

Description of key information

Aquatic Bioaccumulation:

No information on the bioconcentration or accumulation in aquatic organisms was found for tungsten (W) metal.

Bioconcentration is the tendency of materials to concentrate directly from water in a living organism over time. There is no testing performed according to standard methodology in the published literature regarding bioconcentration of tungsten compounds in general or tungsten metal specifically, in aquatic organisms. However, in a static renewal, toxicity test on Poecilia reticulate testing sodium tungstate, Strigul et al (2010) measured tungsten uptake in 5 fish- 2 controls and 3 exposed to 7.5 g/L (nominal sodium tungstate concentration). The fish from the test group had died within the first 24 hours of exposure. The BCF was calculated as the ratio of tungsten concentration in fish tissue (in mg W per kg wet or dry) to tungsten concentration in water (in mg/L). BCF was calculated on both wet and dry weight of fish. Wet weight BCF for the test substance was calculated as 0.29 +/- 0.94 L/kg. Dry weight BCF for the test substance was calculated as 1.57 +/- 0.5 L/kg. These BCFs are low, indicating little to no immediate accumulation even at toxic exposure levels.

 

Terrestrial Bioaccumulation:

Relatively low bioaccumulation of tungsten is observed in sunflower leaves at soil concentrations of 3900 mg W/kg soil, with calculated concentration factors plateauing at approximately 0.05 (Johnson et al, 2009). Tungsten concentrations factors calculated for ryegrass were higher and ranged from 56.1-0.202 (Strigul et al, 2005). However, it should be noted that background levels of tungsten in the collected soils used for testing were not determined prior to testing. Tungsten concentrations measured in earthworm tissue ranged from 1.52-193.2 mg/kg wet weight in soils with tungsten concentrations of 10-10000 mg/kg soil, respectively (non-aged soil) (Strigul et al, 2005). Additionally, tungsten concentrations of 10 and 10000 mg/kg soil yielded earthworm tissue concentrations of 3.45 and 25.9 mg/kg wet weight, respectively (Strigul et al, 2005). Using these paired concentration data the BCFs for earthworms in non-aged soils ranged 0.152-0.019 and BCFs for aged soils ranged 0.345-0.00259. However, it should be noted that background levels of tungsten in the collected soils used for testing were not determined prior to testing. Tungsten is not expected to bioaccumulate in terrestrial organisms.

Additional information

No aquatic or terrestrial bioaccumulation data of sufficient quality were available specifically on tungsten metal (target substance). However, aquatic or terrestrial bioaccumulation study is available on sodium tungstate (source substance), which will be used for read-across. Due to lower water solubility and lower toxicity for the target substance compared to the source substance, the resulting read-across from the source substance to the target substance is appropriate as a conservative estimate of potential toxicity for this endpoint. In addition, read-across is appropriate because the classification and labelling is more protective for the source substance than the target substance, the PBT/vPvB profile is the same, and the dose descriptors are, or are expected to be, lower for the source substance. For more details, refer to the read-across category approach included in the Category section of this IUCLID submission on Annex 3 in the CSR.