Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Toxicological information

Toxicity to reproduction

Currently viewing:

Administrative data

Endpoint:
two-generation reproductive toxicity
Type of information:
read-across from supporting substance (structural analogue or surrogate)
Adequacy of study:
supporting study
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
other: Study conducted on read-across material
Justification for type of information:
The read-across report will be attached as soon as possible.
Cross-reference
Reason / purpose for cross-reference:
read-across source
Reference
Endpoint:
two-generation reproductive toxicity
Type of information:
experimental study
Adequacy of study:
weight of evidence
Study period:
2 July 2012 to 4 March 2013
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
other: see 'Remark'
Remarks:
Study conducted in compliance with agreed protocols, with no or minor deviations from standard test guidelines and/or minor methodological deficiencies, which do not affect the quality of the relevant results. The study report was conclusive, done to a valid guideline and the study was conducted under GLP conditions. Since the study was conducted with manganese dichloride, which represents a more available form of manganese, rather than with the registered substance itself, the study was assigned a reliability score of 2.
Reason / purpose for cross-reference:
other: Target substance
Qualifier:
according to guideline
Guideline:
OECD Guideline 416 (Two-Generation Reproduction Toxicity Study)
Deviations:
no
Qualifier:
according to guideline
Guideline:
EPA OPPTS 870.3800 (Reproduction and Fertility Effects)
Deviations:
no
GLP compliance:
yes
Limit test:
no
Species:
rat
Strain:
Sprague-Dawley
Sex:
male/female
Details on test animals or test system and environmental conditions:
TEST ANIMALS
- Age at study initiation: (F0) 6 - 8 weeks
- Weight at study initiation: (F0) Males: 155 - 298 g; Females: 130 - 194 g
- Housing: Animals were initially housed 2 per cage by sex in polycarbonate cages measuring approximately 61 x 43.5 x 24 cm with stainless steel grid tops and solid bottoms. A few days prior to mating, males were transferred to individual cages with a stainless steel grid insert measuring approximately 48 x 37.5 x 25 cm. After mating, the males were rehoused with their original cage-mates in solid bottomed cages. Mated females were transferred to individual solid bottomed cages (approximately 58.6 x 42.5 x 21 cm). White paper tissues were supplied as nesting material from Day 20 of gestation. Females with litters were retained in this cage type until termination after weaning. F1 animals retained after weaning were housed 2 per cage in cages measuring approximately 61 x 43.5 x 24 cm, as described above. The F1 animals then followed the same caging regime as described for the F0 animals.
- Diet: ad libitum
- Water: ad libitum
- Acclimation period: F0 animals were acclimatised for 13 days before the commencement of dosing. For at least 7 days prior to commencement of dosing the animals were conditioned to the restraint procedures used for nose-only exposure by placing the animals in the restraint tubes for gradually increasing period of restraint time up to the maximum expected duration to be used on the study.

ENVIRONMENTAL CONDITIONS
- Temperature (°C): 17 - 26°C
- Humidity (%): 33 - 69%
- Air changes (per hr): at least 10 air changes per hour
- Photoperiod (hrs dark / hrs light): 12 hours light / 12 hours dark
Route of administration:
inhalation: aerosol
Type of inhalation exposure (if applicable):
nose only
Vehicle:
air
Details on exposure:
GENERATION OF TEST ATMOSPHERE / CHAMBER DESCRIPTION
Test aerosols were generated using a Wright Dust Feed generator device. Exposure of the animals to the test material, or vehicle, was achieved utilising a modular nose only stainless steel flow past inhalation chamber.

- Dose formulation Preparation and analysis
Test material formulation was passed through a centrifugal grinder using the finest mesh available and then sieved using a mesh size of 100 μm prior to use, except on one occasion where a sieve mesh of 180 μm was used.

- Preliminary Aerosol Characterisation Investigations
Characterisation of the aerosol generating/exposure system was undertaken prior to commencement of the animal exposures to demonstrate satisfactory performance. Preliminary aerosol characterisation investigations demonstrated that aerosol concentrations were stable spatially within the exposure system and over time and that the particle size distribution investigations showed that test formulation particles for Groups 2 to 4 were respirable for the rat.

- Aerosol Generation
Test item aerosols were generated using a Wright Dust Feed generator device (Wright Dust Feed Mark II, BGI Industries, USA). Prior to the commencement of aerosol generation, a reservoir canister was packed with the test material powder formulation. The powdercake was slowly advanced into the scraper blade at an appropriate speed and scraped powder carried in a pressurised air stream.
The Wright Dust Feed generator device was operated at an appropriate target scraper speed, and air flow rate identified during the preliminary aerosol characterisation investigations. The generated test aerosols were then delivered to the flow past exposure chamber via a connecting tube manifold and mixed with dilution air to achieve the target aerosol concentration. A vacuum pump system was used to continuously exhaust test aerosols from the exposure chamber. Each aerosol generation system was operated to sustain a dynamic airflow sufficient to ensure an evenly distributed exposure aerosol.

- Inhalation Exposure (see Figure 1)
Exposure to the test aerosols was performed using appropriately sized modular nose only stainless steel flow past exposure chamber. Separate inhalation exposure systems were used for the delivery of test aerosol to each treatment group. Each inhalation exposure system was located in an extract booth (to prevent cross-group contamination). This exposure technique allowed a continuous supply of test aerosol to be delivered to each animal; the biased flow created using the flow-past chamber design ensured that there was no re-breathing of the test atmosphere.
For all inhalation exposures, the rats were restrained in clear, tapered, polycarbonate tubes with an adjustable back-stop to prevent the animals from turning in the tubes. The animals’ noses protruded through the anterior end of the restraint tubes which were connected to the exposure chamber by way of a push fit through rubber ‘o’ rings in the chamber wall. This exposure technique was used to minimise concurrent exposure by the oral and dermal routes. The exposure system was operated at an appropriate target total airflow. All flow rates (delivered and extracted) were monitored visually using calibrated flow meters. Exposure chamber flow rates, temperature and relative humidity were monitored and recorded at appropriate intervals during each daily exposure period.


TEST ATMOSPHERE
The aerosol concentration of test material formulation (Groups 2 to 4) or air (Group 1) in the animals’ breathing zone was measured gravimetrically for all groups at regular intervals throughout each daily exposure period.
The test aerosols were sampled using glass-fibre filters (47 mm Whatman GF/B) contained in a stainless steel filter holder in-line with a sampling system comprising a vacuum pump, flow meter and gas meter. Filter samples were collected from a reference sampling port representative of the animal exposure ports and test aerosol sampled for an appropriate duration and target flow rate to ensure that there was no overloading of the filter which would cause a reduction in sampling flow rate. The filters were weighed before and after sampling and the aerosol concentration calculated using the weight of formulation collected and the volume of air sampled.
In addition to the aerosol chamber concentration assessment, blank filter samples were taken to assess background levels of test material and retained for analysis.
All retained filters from Groups 1 to 4 were placed in amber glass jars and stored in a refrigerator set to maintain 4°C prior to analysis for the determination of the aerosol concentration of test material.
A real time aerosol monitor (Casella Microdust, Casella Measurements, UK) was used to assist in monitoring/ assessing the target concentrations at the start of generation each day and provided a continuous overview of any fluctuations in aerosol concentration.

PARTICLE SIZE DISTRIBUTION
The particle size distribution (PSD) of the test aerosols for Groups 2 to 4 was assessed using a Marple 296 Cascade Impactor. Measurements were undertaken at least once weekly up to Week 8 then at least every 4 weeks thereafter from all groups over the course of the dosing phase of the study. Particle size distribution samples were collected from a reference sampling port representative of the animal exposure ports and test aerosol sampled for an appropriate duration and target flow rate.
The particle size distribution of the test aerosols was determined from the plot of the cumulative percentage (by mass) of particles smaller than the cut-point of each impactor stage against the logarithm of each stage cut-point. The mass median aerodynamic diameter (MMAD) and geometric standard deviation (GSD) of the test aerosols were derived by Probit analysis using a computerised linear regression program.

Details on mating procedure:
A few days prior to the initiation of mating, the males were separated into individual grid bottomed cages. Pairings were on a 1 male to 1 female basis. Animals were paired in numerical order within the groups. Each female was transferred to the cage of its appropriate co-group male near the end of the work day, where it remained until mating had occurred or 14 days had elapsed. Vaginal lavages were taken daily early each morning from the day of pairing until mating occurred and the stage of oestrous observed in each lavage recorded. The presence of sperm in such a lavage and/or a copulatory plug in situ was designated as Day 0 of gestation. If the number of males in a group was reduced by mortality, mating was on a 1 male to 2 female basis.
The time taken for each female to show a positive mating sign was evaluated.
Analytical verification of doses or concentrations:
yes
Details on analytical verification of doses or concentrations:
The gravimetric filters and particle size distribution samples collected and retained were subjected to chemical analysis using a method validated at Charles River, Edinburgh under Study No. 428133 (Method No. 2813). Full details of the analytical methodology are contained within that report.
Duration of treatment / exposure:
F0 animals were dosed for 10 weeks prior to mating, and then throughout mating, gestation and lactation until termination after the F1 generation had reached Day 21 of lactation. For F0 males, this treatment continued until the day prior to termination (a total of ca 17 weeks).
From the F1 generation, a group of animals were retained for post weaning assessments. These animals continued on study and were dosed for approximately 11 weeks after weaning, and then throughout mating, gestation and lactation until termination after the F2 generation had reached Day 21 of lactation. For F1 males, this treatment continued until the day prior to termination (a total of ca 17 weeks).
Frequency of treatment:
Daily (ca 6 hours per day, 7 days a week)
Females were dosed throughout gestation up to and including Day 19 of gestation. The animals were not dosed from Day 20/21 of lactation until their litters were born and then exposure was initially reduced to allow the dams to acclimatise to being away from their litter. The females were then dosed as follows:
From Day 1-2 of lactation: ca 1 hour per day
From Day 3-4 of lactation: ca 2 hours per day
From Days 5-20 of lactation until prior to termination (ca Day 21 of lactation): ca 6 hours per day.
Animals that did not litter down, re-commenced/continued dosing until the scheduled termination. Animals that had a litter loss continued on a 6 hour dosing regimen until scheduled sacrifice.
Details on study schedule:
- Selection and Weaning of F1 Animals
From each group, at least 24 males and 24 females were selected for post-weaning assessments. The selected pup(s) were the median’th weight pup(s) of that sex in the litter on Day 21 of lactation. These pups were removed from their mother on Day 21 of lactation, individually identified and housed in a new cage. Pups that were not selected for post-weaning assessments remained with their mother until sacrifice.
Dose / conc.:
5 other: µg/L
Remarks:
Nominal conc.
Dose / conc.:
10 other: µg/L
Remarks:
Nominal conc.
Dose / conc.:
20 other: µg/L
Remarks:
Nominal conc.
Dose / conc.:
6 other: µg/L
Remarks:
Analytical conc. F0 generation
Dose / conc.:
15 other: µg/L
Remarks:
Analytical conc. F0 generation
Dose / conc.:
25 other: µg/L
Remarks:
Analytical conc. F0 generation
Dose / conc.:
4 other: µg/L
Remarks:
Analytical conc. F1 generation
Dose / conc.:
10 other: µg/L
Remarks:
Analytical conc. F1 generation
Dose / conc.:
17 other: µg/L
Remarks:
Analytical conc. F1 generation
No. of animals per sex per dose:
- F0 Generation
28 males and 28 females per dose

- F1 Generation
26 animals per sex were dosed at the target concentration of 0 µg/L
24 animals per sex were dosed at the target concentration of 5 µg/L
24 animals per sex were dosed at the target concentration of 10 µg/L
25 animals per sex were dosed at the target concentration of 20 µg/L
Control animals:
yes, concurrent vehicle
Details on study design:
- Dose selection rationale: The dose levels were selected for use based on results from a preliminary reproduction study in rats (Charles River Study 495849). In addition, guidance values for classification, labelling and packaging (CLP classification) and the inhalable and respirable threshold limit values (TLVs) proposed by the Scientific Committee on Occupational Exposure Limits (SCOEL) were also considered.
Positive control:
na
Parental animals: Observations and examinations:
CAGE SIDE OBSERVATIONS: Yes
- All animals were checked for early each morning and as late as possible each day for viability. Furthermore, all animals were examined for reaction to treatment daily during the course of dosing on the study. The onset, intensity and duration of any signs were recorded.

DETAILED CLINICAL OBSERVATIONS: Yes
- Time schedule: Once each week starting in pretrial, all animals received a detailed clinical examination, including appearance, movement and behaviour patterns, skin and hair condition, eyes and mucous membranes, respiration and excreta.

BODY WEIGHT: Yes
- Time schedule for examinations: Weights of F0 animals were recorded one week prior to the first day dosing, then weekly thereafter until the start of the mating period. Males continued to be weighed weekly until termination; but for females, weighing resumed on Day 0 of gestation (the day of detection of
a positive mating sign), and then on Days 7, 14 and 20 of gestation and Days 1, 7, 14 and 21 of lactation (where the day of birth of the litter was designated Day 0 of lactation).
Post-weaning F1 animals were weighed weekly, starting on a suitable day within one week of weaning of the majority of the litters and continued until termination for males and until mating commenced for females. Mated F1 females were weighed on Days 0, 7, 14 and 20 of gestation, then on Days 1, 7, 14 and 21 of lactation. Females that did not show a positive mating sign were weighed weekly until parturition or termination. Females who had a positive mating sign but failed to litter reverted to the weekly weighing regimen following their theoretical Day 24 of gestation.

FOOD CONSUMPTION: Yes
- Time schedule: Food consumption was quantitatively measured for both sexes weekly, starting one week before treatment commenced (F0 animals) or from a suitable day within one week of weaning of the majority of animals (F1 animals) until placement of males in individual cages prior to mating. Weekly measurements continued after the 14 day mating period. For females, following a clear indication of mating, food consumption was measured over Days 0-7, 7-14 and 14-20 of gestation and Days 0-7, 7-14 and 14-21 of lactation

WATER CONSUMPTION: Yes
- Monitoring of water consumption was limited to a visual inspection of the water bottles on a regular basis throughout the study.

OTHERS:
- Observation of Females with Litters during Lactation
The females were allowed to litter normally. If any animal suffered from a difficult or prolonged parturition, this was recorded. The day of birth of the litter (day on which the first pups are born) was designated Day 0 of lactation. The duration of gestation was calculated.
Deficiencies in maternal care were recorded: inadequate construction or cleaning of the nest, pups left scattered and cold, physical abuse of pups, or apparently inadequate lactation or feeding.

- Seuxal Maturation
Commencing at 28 days of age, females were examined daily for vaginal opening. The day on which the vagina became open was recorded, as was the
body weight on that day. Commencing at 35 days of age, males were examined daily for balano-preputial separation. The day on which separation occurred was recorded, as was the body weight on that day.



Oestrous cyclicity (parental animals):
Over a 2 week period prior to the initiation of mating, vaginal lavages were taken early each morning and the stages of oestrous observed were recorded.
Sperm parameters (parental animals):
The tip of the cauda epididymis was placed in Medium 199 containing 0.2% BSA and HEPES. The sperm were allowed to “swim out” into the medium. An appropriate dilution of the sperm suspension was examined using a Hamilton Thorne sperm motility analyser; sufficient replicates to provide 200 motile sperm were assessed (except where it was obvious that motility was compromised for that animal).
The remaining portion of the cauda epididymis was minced and suspended. Dilutions of this sperm suspension were counted using a haemocytometer to obtain a total sperm count which was expressed per cauda epididymis and per gram of cauda epididymis.
From a sample of the sperm suspension described above, a sperm smear was prepared and stained with eosin. From the Control and High dose animals, two hundred sperm per animal were evaluated for morphological abnormalities using criteria described by Wyrobek and Bruce.
One testis wase decapsulated and homogenized. The homogenate may have been sonicated to remove tissue debris etc, as required. The number of homogenisation resistant spermatids in dilutions of this suspension were counted using a haemocytometer to obtain a total spermatid count which was expressed per testis and per gram of testis.
Litter observations:
The numbers of live and dead pups born in each litter was recorded as soon as possible after completion of parturition on Day 0 of lactation. The live pups were counted and examined from Day 1 onwards for the presence of milk in the stomach and for any externally visible abnormalities daily. The pups were weighed en masse, sexes separated, on Days 1, 4, 7 and 14 of lactation. On Day 21 all pups were weighed individually.
Where practicable, any pups that were found dead or were killed during lactation were sexed and appropriately examined as above. Prior to Day 14 of lactation, any externally abnormal decedent pup was preserved; externally normal ones were discarded. On or after Day 14 of lactation, decedent pups were necropsied.

Postmortem examinations (parental animals):
SACRIFICE
Termination for the adult females was at or shortly after weaning of their litters (Day 21 of lactation). Termination for males was around the time of the termination of the females.
Animals 10 days of age or more were killed by exposure to carbon dioxide followed by exsanguination.

UNSCHEDULED DEATHS
These animals, including those killed or found dead, had a terminal body weight recorded and were necropsied with a view to diagnosis of the cause of the animal’s condition or cause of death. An external examination was followed by inspection of the cranial, thoracic and abdominal contents. The tissues list for animals at scheduled necropsy along with representative samples of abnormal tissues, together with any other tissues considered appropriate, were fixed in neutral 10% formalin. The reproductive tracts of all females were examined for signs of implantation (if they had been paired for mating prior to necropsy), the number of any implantation sites being recorded.

GROSS NECROPSY
Animals were subjected to a complete necropsy examination, which included evaluation of external surfaces and orifices; cranial; thoracic, abdominal, and pelvic cavities with their associated organs and tissues. Necropsy examinations consisted of an external and internal examination and recording of observations for all animals.

ORGAN WEIGHTS
The following were weighed: brain, epididymides, adrenal glands, pituitary gland, prostate glang, thyroid glands, kidneys, liver, lung, ovaries, spleen, testes, uterus.

OVARIAN AND UTERINE EXAMINATIONS
The reproductive tract was dissected from the abdominal cavity. The uterus was opened and the contents examined. The reproductive tracts of all females were examined for signs of implantation, the number of any implantation sites being recorded.

HISTOPATHOLOGY
Histological examination was conducted on all adults in the Control and High dose groups of the F0 and F1 generation and a selection of the premature decedents. After a review of the data, histological examination of the respiratory tract tissues of the Control and High dose animals, it was considered appropriate to conduct histopathology on the respiratory tract of all adult animals of the F0 and F1 generation.
The following tissues were processed for microscopic evaluation: adrenal glands, larynx, left testis, left epididymis, lung, bronchial lymph node, cervical lymph node, nasal cavity, ovaries, pharynx, prostate, pituitary gland, seminal vesicles and coagulating glands, trachea (anterior and posterior), uterus (with oviducts and cervix), vagina.
Additionally, a Periodic Acid Schiff and Haematoxylin (PAS-H) stained section was prepared from the left testis.
A detailed qualitative examination of the testes was made, taking into account the tubular stages of the spermatogenic cycle. The examination was conducted in order to identify treatment-related effects such as missing germ cell layers or types, retained spermatids, multinucleate or apoptotic germ cells and sloughing of spermatogenic cells into the lumen. Any cell- or stage-specificity of testicular findings were noted.
The examination of the ovaries included quantification of the primordial and growing oocytes, and the confirmation of the presence or absence of the corpora lutea.
Postmortem examinations (offspring):
SACRIFICE / GROSS NECROPSY
Pups that were not selected for post-weaning assessments were killed at the same time as their mother.
Animals less than 10 days of age were killed by intra-peritoneal injection of sodium pentobarbitone.

- Offspring found dead or killed (prematurely) before Day 14 of lactation
Where practicable, these animals were sexed, then checked for the presence of milk in the stomach and for the presence of any externally visible abnormalities. Any abnormal pups were, where practicable, fixed in 10% formalin or methylated ethyl alcohol, as appropriate, for optional further examination. Externally normal decedents were discarded.

- Offspring (pre-weaning) found dead or killed (prematurely) on or after Day 14 of lactation
These animals were necropsied. This consisted of an external examination followed by macroscopic examination of the tissues and organs of the cranial, thoracic and abdominal cavities in situ. Samples of any grossly abnormal tissues were preserved in 10% formalin. These carcasses were then discarded.

- F1 and F2 Weanlings at scheduled termination
From each litter, 3 male and 3 female pups (where they were available – if a litter only had females or males, then up to 6 of the relevant sex were selected) were necropsied. This consisted of an external examination followed by macroscopic examination of the tissues and organs of the cranial, thoracic and abdominal cavities in situ. Samples of any grossly abnormal tissues were preserved in 10% formalin. From one of the 3 pups of each sex, the weights of the brain, spleen and thymus were recorded, and these organs were preserved. Representative samples of any abnormal tissues from any of the 6 pups were also
preserved. The carcasses were then discarded.
The remaining pups in each litter were checked for externally visible abnormalities at the time of killing. Any found to have such an abnormality were necropsied as described in the preceding paragraph. The remaining carcasses were discarded.

ORGAN WEIGHTS
The following were weighed: brain, epididymides, adrenal glands, pituitary gland, prostate glang, thyroid glands, kidneys, liver, lung, ovaries, spleen, testes, uterus.

HISTOPATHOLOGY
Histological examination was conducted on the brain, spleen and thymus of Control and High dose F1 and F2 weanlings (the selected weanlings at necropsy). A single H&E section was cut, stained and evaluated.
Statistics:
Unless otherwise stated, all statistical tests were two-sided and performed at the 5% significance level using in house software. Pairwise comparisons were only performed against the control group.
Select body weight and food consumption were analysed for homogeneity of variance using the ‘F-Max’ test. If the group variance appeared homogeneous, a parametric ANOVA was used and pairwise comparisons were made using Fisher’s F-protected LSD method via Student’s t-test ie pairwise comparisons was made only if the overall F-test was significant. If the variances were heterogeneous, log or square root transformations were used in an attempt to stabilize the variances. If the variances remained heterogeneous, then a Kruskal-Wallis non-parametric ANOVA was used and pairwise comparisons were made using chi squared protection (Via z tests, the non-parametric equivalent of Student’s t test).
Organ weight data was analysed as above, and by analysis of covariance (ANCOVA) using terminal body weight as the covariate.
Reproductive indices:
For each group the following were calculated:

Fertility Index (male) = number siring a litter / Number paired

Fertility Index (female) = Number pregnant / Number paired

Gestation Index = Number bearing live pups / Number pregnant
Offspring viability indices:
For each litter and group the following were calculated:

Birth Index = Total number of pups born (alive and dead) / Number of implantation scars

Live Birth Index = Total number of pups live on Day 0 of lactation / Total number born (live and dead)

Viability Index = Number of pups live on Day 4 of lactation / Number live on Day 0

Lactation Index = Number of pups live on Day 21 of lactation / Number live on Day 4

Overall Survival Index = Number of pups live on Day 21 of lactation / Total number born (live and dead)
Clinical signs:
effects observed, treatment-related
Body weight and weight changes:
effects observed, treatment-related
Food consumption and compound intake (if feeding study):
effects observed, treatment-related
Organ weight findings including organ / body weight ratios:
effects observed, treatment-related
Histopathological findings: non-neoplastic:
effects observed, treatment-related
Other effects:
not examined
Reproductive function: oestrous cycle:
no effects observed
Reproductive function: sperm measures:
no effects observed
Reproductive performance:
no effects observed
MORTALITY (PARENTAL ANIMALS)
- F0 animals
Animal 138 (Group 1F) was killed prematurely on Day 97 of the study. The animal was sacrificed at the time of parturition as the animal had difficulty giving birth and there was a pup protruding from the vagina (the animal gave birth to one live pup). The uterus also contained live foetuses and one late death. Animal 330 (Group 3F) was killed prematurely on Day 94 of the study. The animal had a prolonged parturition and had given birth to 3 live pups. One dead foetus was found in the right uterine horn at necropsy. There were no abnormalities detected at histological evaluation.
Animals 228 (Group 2M) and 236 (Group 2F) were killed prematurely on Day 85 and Day 83, respectively due to clinical signs. The male animal had shavings stained red, a cold body, reduced activity, rolling gait, staggering and weight loss. Necropsy findings for this animal included yellow froth filled duodenum, ileum and jejenum, pale foci on kidney, pale foci left lung lobe, enlargement of adrenal gland, small thymus, urinary bladder adhesions. Histological findings included a mild ulcer in the larynx. The female had partially closed eyes, dilated pupils, tremors, unkempt coat, walking on tip toes, irregular respiration, staggering and subdued. Necropsy findings included pale extremities and fluid accumulation in both horns of the uterus (the animal was sacrificed prior to having a clear indication of mating). There were no abnormalities detected at histological evaluation.
There was no treatment related pattern to these deaths and these were not positively attributed to treatment.
- F1 animals
Animal 521 (Group 1M), animal 717 (Group 3M), animal 748 (Group 3F), Animal 751 (Group 3F) and animal 816 (Group 4M) were killed prematurely. However, none of these premature deaths were considered to be related to treatment but were considered to be due to accidental injury.

CLINICAL SIGNS (PARENTAL ANIMALS)
- F0 animals
At target 20 μg/L, there were 2/28 males noted as having wheezing respiration. Animal 333 (Group 3F) had clinical signs including wheezing, unkempt coat, walking on tip toes, rolling gait and weight loss recorded over ca Days 83-90 of the study. Due to the signs dosing for the animal was stopped for a few days. However, the animal recovered from these signs and dosing continued until scheduled termination. As no similar findings were noted in the other animals, these signs were considered to be incidental. Other clinical signs noted in the F0 animals were considered to be incidental or due to the dosing procedure (wet, unkempt coat).
- F1 animals
Clinical observations noted in the F1 animals were considered to be incidental or due to the dosing procedure (wet, unkempt coat).

BODY WEIGHT (PARENTAL ANIMALS)
- F0 animals
At target 20 μg/L, there was a decrease in body weight gain in males over Days 0-21 of the study. From Day 21 of the study, the body weight gains were generally comparable to the controls but the group mean weights remained lower than the controls throughout the study. At target 20 μg/L, there was a group mean body weight gain in females prior to mating were similar to the controls, however body weight gains over Days 0-20 of gestation were slightly lower than the controls. Gains over lactation were similar to the controls.
- F1 animals
At target 20 μg/L, there was a reduction in group mean body weight gain of the males during the first 5 days of the study, however gains over the following week were greater than the controls and then remained comparable with the controls throughout the remainder of the treatment period. Slight intergroup differences in group mean body weight gains in the F1 females prior to mating were too small to be attributed to treatment. At 20 μg/L, there was a slight reduction in body weight gains throughout gestation compared to the controls.
There were no effects of treatment noted in the lactation females.

FOOD CONSUMPTION (PARENTAL ANIMALS)
- F0 animals
At target 20 μg/L, there was reduced food consumption for males throughout the majority of the study, compared with the controls. At target 20 μg/L, there was a transient reduction in food consumption in the females on commencement of treatment compared with the controls; however, consumption for the remainder of the pre-mating period was similar to the controls. Slight intergroup differences in the group mean food consumption in the males at target 5 μg/L and target 10 μg/L were not attributed to treatment. Slight intergroup differences in group mean food consumption throughout gestation and lactation were not attributed to treatment.
- F1 animals
At target 20 μg/L, there was a slight reduction in group mean food consumption in the males over Days 40-68 of the study; these reductions achieved statistical significance. Slight intergroup differences in group mean food consumption at target 5 μg/L and target 10 μg/L were not attributed to treatment. Group mean food consumption in the females prior to mating and throughout gestation and lactation were comparable to the controls.

REPRODUCTIVE FUNCTION: ESTROUS CYCLE (PARENTAL ANIMALS)
The stages of the oestrus cycles and their mean duration were similar in all groups for both generations.

REPRODUCTIVE FUNCTION: SPERM MEASURES (PARENTAL ANIMALS)
There were no effects on the sperm motility, count or morphology at any of the dose levels applied, in either generation.

REPRODUCTIVE PERFORMANCE (PARENTAL ANIMALS)
There were no effects of treatment on mating performance, fertility or duration of gestation in either generation.

ORGAN WEIGHTS (PARENTAL ANIMALS)
- F0 animals
At target 20 μg/L, reduced brain weights in males achieved statistical significance (P<0.05) compared with controls. However, the lower body weight was also statistically significant (P<0.05) following covariance analysis brain weight did not achieve significance and therefore was not positively attributed to treatment. In all treated females, there was a statistically significant increase in lung weights, compared with the controls; these increases were still present following covariance analysis (P<0.01 at target 5 μg/L and P<0.001 at target 10 and 20 μg/L). Other slight differences in organ weights such as an increased thyroid weight in males at target 5 μg/L and an increase in kidney weights of females at target 10 μg/L were not attributed
to treatment.
- F1 animals
At target 5 and 10 μg/L, kidney weights in males were statistically higher than the control, however there was no dose relationship to this increase and following covariance analysis, these findings were no longer evident. At target 10 and 20 μg/L, there was a statistically significant increase in kidney weights in females (P<0.05 at target 10 μg/L and P<0.001 at target 20 μg/L) following covariance analysis. Other slight differences in organ weights such as an increased adrenal weight in females at target 20 μg/L were not attributed to treatment.

GROSS PATHOLOGY (PARENTAL ANIMALS)
There were no treatment related gross findings recorded. The findings observed were considered incidental, of the nature commonly observed in this strain and age of rat, and/or were of similar incidence in control and treated animals and, therefore, were considered unrelated to administration ofthe test material.

HISTOPATHOLOGY (PARENTAL ANIMALS)
There were no treatment related findings observed in the reproductive tract in the F0 or F1 generations.
Histological findings were confined to the respiratory tract. Inhalation of the test material was associated with microscopic findings in the nasal cavity, larynx, lung and trachea (including carina) in all dose groups of the F0 generation, in the pharynx of F0 generation animals exposed to target 10 and 20 μg/L; in the nasal cavity, pharynx, larynx and lung in all dosed group of the F1 generation and in the trachea (including carina) of F1 generation animals exposed to target 10 and 20 μg/L.

OTHER FINDINGS (PARENTAL ANIMALS)
- Sexual Maturation
The age and body weight at preputial separation or vaginal opening of the F1 generation animals in all treated groups was similar to the controls.
Dose descriptor:
NOEL
Effect level:
20 mg/m³ air
Based on:
test mat.
Sex:
male/female
Basis for effect level:
other: No treatment related effectswere observed
Remarks on result:
other: Generation: F0 and F1
Clinical signs:
no effects observed
Mortality / viability:
no mortality observed
Body weight and weight changes:
no effects observed
Sexual maturation:
no effects observed
Organ weight findings including organ / body weight ratios:
no effects observed
Gross pathological findings:
no effects observed
Histopathological findings:
no effects observed
LITER SIZE AND PUP MORTALITY
- F0 generation, F1 production
The mean number of implant sites and total number of pups born in all groups was comparable to controls.
At target 20 μg/L, there was an increase in the number of animals losing more than 2 pups at birth (total pups born/no. of implantation sites). However, the mean birth index (%) was well within the background range and these increases were considered to be incidental.
- F1 generation, F2 production
The mean number of implant sites and total number of pups born in all groups was comparable to controls.
At target 10 and 20 μg/L, pup survival (no. losing >3 pups) over Days 0-4 of lactation was slightly lower than the controls. However, the number of animals losing the entire litter was comparable with controls and the remaining animals generally lost 4 pups. In addition, there was no clear dose related response to these reductions and these were considered not to be an effect of treatment.

LITTER AND PUP WEIGHTS
- F0 Generation
In all treated groups, group mean litter and pup weights were comparable to the controls.
- F1 Generation
At target 20 μg/L, group mean litter weights were slightly lower than the controls which reflected the smaller litter size at this level. However, although the litter weights were slightly lower than the controls, the mean pup weights in both males and females were comparable to the controls.

ORGAN WEIGHTS
- F0 generation, F1 production
At target 20 μg/L, there was a reduction in thymus weight of the females, compared with the controls (P<0.01). Following covariance analysis, this reduction did not achieve statistical significance. There were no effects on organ weights at target 5 and 10 μg/L.
- F1 generation, F2 production
Slight intergroup differences in organ weights did not achieve statistical significance and were attributed to treatment.

GROSS PATHOLOGY
There were no treatment related gross findings recorded. The findings observed were considered incidental, of the nature commonly observed in this strain and age of rat, and/or were of similar incidence in control and treated animals and, therefore, were considered unrelated to treatment with the test material.

HISTOPATHOLOGY
There were no treatment related findings observed in the tissues examined of the F1 or F2 weanlings.
Dose descriptor:
other: Not specified
Generation:
F1
Based on:
not specified
Sex:
not specified
Basis for effect level:
other: Not specified
Remarks on result:
not measured/tested
Reproductive effects observed:
not specified

Blood Analysis Results

F0 Males

Time-point

Blood Mn conc (ppb w/v (ng/mL))

Group 1 (Control)

Group 2 (5 µg/L)

Group 3 (10 µg/L)

Group 4 (20 µg/L)

Pre-treatment

7

7

7

6

Prior to mating

6

13

23

27

Prior to Necropsy

6

19

27

29

F0 Females

Time-point

Blood Mn conc (ppb w/v (ng/mL))

Group 1 (Control)

Group 2 (5 µg/L)

Group 3 (10 µg/L)

Group 4 (20 µg/L)

Pre-treatment

7

7

7

7

Prior to mating

6

16

28

39

Prior to Necropsy

7

16

24

33

At target 20 μg/L, manganese levels prior to mating were 350% higher than controls in males and 550% higher than controls in females at the pre-mating timepoint. At terminal necropsy, these values were 383% and 371% for males and females.

At target 10 μg/L, manganese levels prior to mating were 283% higher than controls in males and 367% higher than controls in females at the pre-mating timepoint. At terminal necropsy, these values were 350% and 243% for males and females.

At target 5 μg/L, manganese levels prior to mating were 117% higher than controls in males and 167% higher than controls in females at the pre-mating timepoint. At terminal necropsy, these values were 217% and 129% for males and females.

F1 Males

Time-point

Blood Mn conc (ppb w/v (ng/mL))

Group 1 (Control)

Group 2 (5 µg/L)

Group 3 (10 µg/L)

Group 4 (20 µg/L)

Pre-treatment

12

16

16

17

Prior to mating

6

9

13

19

Prior to Necropsy

6

9

14

21

F1 Females

Time-point

Blood Mn conc (ppb w/v (ng/mL))

Group 1 (Control)

Group 2 (5 µg/L)

Group 3 (10 µg/L)

Group 4 (20 µg/L)

Pre-treatment

13

12

15

15

Prior to mating

6

10

16

23

Prior to Necropsy

7

10

16

21

At target 20 μg/L, manganese levels prior to mating were 217% higher than controls in males and 283% higher than controls in females at the pre-mating timepoint. At terminal necropsy, these values were 250% and 200% for males and females.

At target 10 μg/L, manganese levels prior to mating were 112% higher than controls in males and 133% higher than controls in females at the pre-mating timepoint. At terminal necropsy, these values were 167% and 129% for males and females.

At target 5 μg/L, manganese levels prior to mating were 50% higher than controls in males and females at the pre-mating timepoint. At terminal necropsy, these values were 50% and 43% for males and females.

The manganese concentrations in the blood of all the treated F1 animals were lower than the same time-point levels of the F0 generation animals.

Conclusions:
Under the conditions of the study the No Observed Effect Level (NOEL) for reproductive toxicity was determined to be 20 µg/L.
Executive summary:

The reproductive toxicity of the test material was investigated in a two generation study which was conducted under GLP conditions and in accordance with the standardised guidelines OECD 416 and EPA OPPTS 870.3800.

F0 animals were randomised into 3 test groups and one control group, each containing 28 males and 28 females. These animals were dosed for 10 weeks prior to mating, and then throughout mating, gestation and lactation until termination after the F1 generation had reached Day 21 of lactation.

From each treatment group, at least 24 males and 24 females were retained for post weaning assessments. These animals continued on study and were dosed for approximately 11 weeks after weaning, and then throughout mating, gestation and lactation until termination after the F2 generation had reached Day 21 of lactation.

Animals were monitored for clinical signs of toxicity and for effects on body weight, food consumption, effects on oestrous cycles, mating performance, pregnancy performance, difficulty or prolongation of parturition, and for deficiencies in maternal care. The offspring were monitored for survival and growth up to weaning. In addition, the following endpoints were evaluated: gross necropsy findings, organ weights, histopathology evaluation, qualitative examination of testes and examination of the ovaries and sperm evaluation. Blood samples were taken from all adult animals for bioanalytical analysis prior to dosing, prior to mating and prior to weaning/necropsy.

Clinical signs of reaction to treatment to inhalation exposure of the test material were confined to a few animals with wheezing respiration in the F0 generation exposed to target levels of 10 and 20 μg/L. At target 20 μg/L, overall body weights and food consumption of the F0 males throughout the study were lower than controls. In the F1 generation, the body weight gain of the males at target 20 μg/L were transiently reduced on commencement of treatment; in addition, the food consumption at this level was lower than the controls over Days 19-68 of treatment. At target 20 μg/L, there was a slight reduction in group mean body weight gains during gestation in both generations. Gains throughout lactation were similar to controls.

There was no effect of treatment on oestrous cycles, mating performance, fertility or duration of gestation or litter size in either generation. Slight intergroup differences in the pup survival were too small to be attributed to treatment. Group mean litter and pup weights in the F0 generation litters were comparable with controls. At target 20 μg/L, group mean litter weights were slightly lower than the controls, however this reflected a slightly smaller litter size at this level. The mean pup weights in both males and females were comparable to the controls and the slightly lower litter weights were not attributed to treatment. There were no effects of treatment on the sexual maturity of the F1 animals.

At target 10 and 20 μg/L, there was a statistically significant increase in kidney weights compared to the controls, however there was no alteration in the normal structure of these organs, as seen by microscopy (at target 20 μg/L). In all treated F0 females, there was a statistically significant increase in lung weights compared to the controls; this increase in lung weights was not evident in the F1 females.

There was no effect of treatment on the sperm motility, count of morphology (sperm) or the ovary follicle scoring in either generation.

Inhalation of the test material was associated with microscopic findings in the nasal cavity, larynx, lung and trachea (including carina) in all dose groups of the F0 generation, in the pharynx of F0 generation animals exposed to target 10 and 20 μg/L; in the nasal cavity, pharynx, larynx and lung in all dosed group of the F1 generation and in the trachea (including carina) of F1 generation animals exposed to target 10 and 20 μg/L. No test material related findings were observed in the reproductive tract in the F0 or F1 generations and in tissues examined from weanlings in the F1 and F2 generations.

In all treated groups of the F0 generation, the levels of manganese in the blood increased significantly on commencement of dosing (as recorded prior to mating) in both males and females. The concentrations recorded prior to mating and prior to necropsy were comparable in all groups which did not indicate any obvious accumulation over the dosing period. In the F1 generation, pre-treatment concentrations in all groups were higher than the F0 generation pre-treatment values. In addition, at target 5 and 10 μg/L in the F1 generation, the pre-treatment values were generally higher or similar to the values recorded during the dosing period, indicating that the exposure to the test material through the mother’s milk during lactation resulted in an increased exposure to the test item in the F1 animals from birth. At target 20 μg/L, the concentrations of the F1 males and females throughout the dosing period were greater than the pre-treatment values indicating an increased exposure throughout the dosing period.

In conclusion, under the conditions of this study, a No Observed Effect Level for adult effects was not established due to effects on the respiratory tract. The No Observed Effect Level (NOEL) for reproductive performance was considered to be the target dose level 20 μg/L.

Data source

Materials and methods

Test material

Constituent 1
Chemical structure
Reference substance name:
Trimanganese tetraoxide
EC Number:
215-266-5
EC Name:
Trimanganese tetraoxide
Cas Number:
1317-35-7
Molecular formula:
Mn3O4
IUPAC Name:
trimanganese tetraoxide

Results and discussion

Results: P0 (first parental generation)

Effect levels (P0)

Dose descriptor:
NOEL
Effect level:
20 mg/m³ air
Based on:
test mat.
Sex:
male/female
Basis for effect level:
other: No treatment-related effects were observed.

Results: F1 generation

Effect levels (F1)

Dose descriptor:
NOAEL
Generation:
F1
Based on:
not specified
Sex:
not specified
Basis for effect level:
other: Not specified
Remarks on result:
not measured/tested

Applicant's summary and conclusion