Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 220-666-8 | CAS number: 2855-13-2
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Biodegradation in water and sediment: simulation tests
Administrative data
Link to relevant study record(s)
- Endpoint:
- biodegradation in water: sewage treatment simulation testing
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Study period:
- 1992-07-07 to 1992-08-07
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- other: Guideline study with acceptable restrictions: Distinction between elimination by biodegradation and by adsorption not possible
- Qualifier:
- equivalent or similar to guideline
- Guideline:
- OECD Guideline 303 A (Simulation Test - Aerobic Sewage Treatment. A: Activated Sludge Units)
- Deviations:
- not specified
- GLP compliance:
- yes
- Radiolabelling:
- no
- Oxygen conditions:
- aerobic
- Inoculum or test system:
- activated sludge, non-adapted
- Details on inoculum:
- INOCULUM/TEST ORGANISM
- Source: municipal WWTP Marl-West, sampled 07 Jul 1992
- Pretreatment: fed into test apparatus ca. 40 min after sampling - Duration of test (contact time):
- 6 d
- Initial conc.:
- 15.9 mg/L
- Based on:
- test mat.
- Initial conc.:
- 10.1 mg/L
- Based on:
- DOC
- Parameter followed for biodegradation estimation:
- DOC removal
- Details on study design:
- TEST SYSTEM
- Culturing apparatus: flow-through (3 l; 0.5 l/h) - Number of culture flasks per concentration: 1 - Aeration device: pump
- Composition of synthetic waste water: 88 mg/l Pepton (Unipath) 55 mg/l meat extract (Unipath) 15 mg/l urea, CAS RN 57-13-6 3.5 mg/l sodium chloride p.a., CAS RN 7647-14-5 2 mg/l calcium chloride x 2 H2O p.a. 1 mg/l magnesium sulfate x 7 H2O p.a. 14 mg/l K2HPO4 p.a. 98 mg/l NaHCO3 (Ferak) -
Additional nutrition substrate A: 32 g/l Pepton 22 g/l meat extract 6 g/l urea 1.4 g/l sodium chloride 0.8 g/l calcium chloride x 2 H2O 0.4 g/l magnesium sulfate x 7 H2O substrate B
- 33.5 g/l K2HPO4 is stored separately - 47 g/l NaHCO3 is stored separately
- 5 ml K2HPO4 soln. + 25 ml NaHCO3 soln + 11 l tap water This soln. and nutrition substrate A (30 ml/l) are added separately
- Duration of the test:: 31 days
- Test temperature: 21.8-26.2 degree C - Other relevant factors: mean retention time 6 hours - Reference substance:
- not required
- % Degr.:
- 42
- Parameter:
- DOC removal
- Sampling time:
- 31 d
- Transformation products:
- not measured
- Evaporation of parent compound:
- not measured
- Volatile metabolites:
- not measured
- Residues:
- not measured
- Details on results:
- The mean of 19 measurements at approximately regular intervals is 42.0 +/- 5.01 % degradation
- Validity criteria fulfilled:
- not specified
- Conclusions:
- The present study indicates that a certain amount (ca. 42 %) of the test substance may degrade in the sewage treatment plant.
- Executive summary:
The present study on isophorone diamine simulates the degradation of the test substance in a sewage treatment plant and is similar or equivalent to OECD 303. The simulation study indicates that 42 % of the test item degraded within a period of 31 days. The study was assessed as "reliable with restrictions".
- Endpoint:
- biodegradation in water: simulation testing on ultimate degradation in surface water
- Remarks:
- Prediction of degradation products using CATALOGIC 301 C v .09.13
- Type of information:
- (Q)SAR
- Adequacy of study:
- key study
- Study period:
- 2021
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- results derived from a valid (Q)SAR model and falling into its applicability domain, with adequate and reliable documentation / justification
- Justification for type of information:
- 1. SOFTWARE
OASIS Catalogic v5.11.19
2. MODEL (incl. version number)
CATALOGIC 301C v.09.13
3. SMILES OR OTHER IDENTIFIERS USED AS INPUT FOR THE MODEL
See section 'Test Material'.
4. SCIENTIFIC VALIDITY OF THE (Q)SAR MODEL
See attached QMRF.
5. APPLICABILITY DOMAIN
See attached QPRF.
6. ADEQUACY OF THE RESULT
- The model is scientifically valid (see attached QMRF).
- The model estimates the biodegradability of a substance Screening information on the ready biodegradability is required for substances manufactured or imported in quantities of 1 t/y or more. Depending on the results, further information may be required for substances manufactured or imported in quantities of 100 t/y or more (simulation testing on ultimate degradation in surface water/soil/sediment). Column 2 of REACH Annex VII provides exemptions for conducting the study. It does not need to be conducted if the substance is inorganic. According to column 2 of REACH Annex IX, testing is not required if the substance is highly insoluble in water, or the substance is readily biodegradable.
- See attached QPRF for reliability assessment. - Principles of method if other than guideline:
- Estimation of ready biodegradation and degradation products using OASIS Catalogic v5.11.19 BOD 28 days MITI (301 C v .09.13).
- GLP compliance:
- no
- Oxygen conditions:
- aerobic
- Key result
- Remarks on result:
- other: The applied QSAR model was used to predict the identity and quantity of the degradation products of the substance.
- Transformation products:
- yes
- Endpoint:
- biodegradation in water: sediment simulation testing
- Remarks:
- Prediction of degradation products using CATALOGIC 301 C v .09.13
- Type of information:
- (Q)SAR
- Adequacy of study:
- key study
- Study period:
- 2021
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- results derived from a valid (Q)SAR model and falling into its applicability domain, with adequate and reliable documentation / justification
- Justification for type of information:
- 1. SOFTWARE
OASIS Catalogic v5.11.19
2. MODEL (incl. version number)
CATALOGIC 301C v.09.13
3. SMILES OR OTHER IDENTIFIERS USED AS INPUT FOR THE MODEL
See section 'Test Material'.
4. SCIENTIFIC VALIDITY OF THE (Q)SAR MODEL
See attached QMRF.
5. APPLICABILITY DOMAIN
See attached QPRF.
6. ADEQUACY OF THE RESULT
- The model is scientifically valid (see attached QMRF).
- The model estimates the biodegradability of a substance Screening information on the ready biodegradability is required for substances manufactured or imported in quantities of 1 t/y or more. Depending on the results, further information may be required for substances manufactured or imported in quantities of 100 t/y or more (simulation testing on ultimate degradation in surface water/soil/sediment). Column 2 of REACH Annex VII provides exemptions for conducting the study. It does not need to be conducted if the substance is inorganic. According to column 2 of REACH Annex IX, testing is not required if the substance is highly insoluble in water, or the substance is readily biodegradable.
- See attached QPRF for reliability assessment. - Principles of method if other than guideline:
- Estimation of ready biodegradation and degradation products using OASIS Catalogic v5.11.19 BOD 28 days MITI (301 C v .09.13).
- GLP compliance:
- no
- Oxygen conditions:
- aerobic
- Key result
- Remarks on result:
- other: The applied QSAR model was used to predict the identity and quantity of the degradation products of the substance.
- Transformation products:
- yes
- Endpoint:
- biodegradation in water: sediment simulation testing
- Data waiving:
- exposure considerations
- Justification for data waiving:
- the study does not need to be conducted because direct and indirect exposure of sediment is unlikely
- Reason / purpose for cross-reference:
- data waiving: supporting information
- Endpoint:
- biodegradation in water: simulation testing on ultimate degradation in surface water
- Data waiving:
- study scientifically not necessary / other information available
- Justification for data waiving:
- other:
- Reason / purpose for cross-reference:
- data waiving: supporting information
Referenceopen allclose all
-Concomitant predictions:
Not ready degradable
Primary Half Life = 9.24 days
Ultimae Half Life = 3m 27d
- Predicted value (model result): O2 -consumption (BOD) = 0.15 ± 0.0172
Predicted metabolites:
Table: QSAR prediction for CAS 2855-13-2 (3-aminomethyl-3,5,5-trimethylcyclohexylamine (IPDA) using CATALOGIC 301 C v .09.13 - June, 2016; metabolites with a quantity > 0. 1 % parent after 28 d are highlighted by bold type; metabolite no: according to (Q)SAR model Catalogic v09.13)
No | Metabolite no | Smiles | Level | Transformation no | Transformation name | Quantity (%) | Log Kow | BOD prediction % 80D (28 d) |
1 | 13 | CC1(C)CC(N)CC(C)(C(O )=O}C1 | 2 | 66 | Aldehyde Oxidation | 14,82 | -1,06 | 9 |
2 | Parent | CC1(C)CC(N)CC(C)(CN)C1 | 0 |
|
| 12,23 | 1,90 | 15 |
3 | 66 | CC(C)(CC(C)(C)C(O)=O)C(O)=O | 7 | 66 | Aldehyde Oxidation | 7,011 | 1,48 | 0 |
4 | 68 | CC(C)(CC(C)(CC(O)=O)C(O)=O)C(O)=O | 7 | 66 | Aldehyde oxidation | 10,56 | 0,73 | 0 |
5 | 57 | CC(C)(C)CC(C)(CO)C(O)=O | 6 | 346 | Decarboxylation | 6,41 | 1,84 | 1 |
6 | 35 | CC/C)/CC/C)/CC/0)=0)CN)C/0)=0 | 4 | 66 | Aldehvde Oxidation | 5,713 | -2,70 | 7 |
7 | 33 | CC/C)/CC/O)=OlCC/C)/CN)C/0)=0 | 4 | 66 | Aldehvde Oxidation | 5,713 | -2,70 | 22 |
8 | 46 | CC(C)(CC(C)(C)CN)C(O)=O | 5 | 346 | Decarboxylation | 4,54 | -1,37 | 8 |
9 | 45 | CC{C){C)CC{C){CN)C{O)=O | 5 | 346 | Decarboxylation | 4,54 | -1,37 | 22 |
10 | 107 | CC(C)(C)C(O)=O | 14 | 319 | Decarboxylation | 4,097 | 1,45 | 0 |
11 | 47 | CC(C)(CC(O)=O)CC(C)(CO)C(0)=O | 5 | 309 | Ester hydrolysis | 3,519 | 0,51 | 1 |
12 | 12 | CC1(C)CC(C)(CN)CC( =O) OC1 | 2 | 184 | Bayer-Villiger oxidation | 2,192 | 0,95 | 13 |
13 | 11 | CC1(C)CC(=O)OCC(C)(CN)C1 | 2 | 184 | Bayer-Villiger oxidation | 2,192 | 0,95 | 17 |
14 | 74 | CC/Cl/CC/Cl/CO)C/Ol=OlC/O)=O | 8 | 487 | Methvl arouo oxidation | 2,06 | 0,01 | 0 |
15 | 25 | CC1(C(O)=O)CC(N)CC(C)(CN)C1 | 3 | 66 | Aldehyde Oxidation | 1,751 | -2,54 | 18 |
16 | 38 | CC1(C)CC( C)(C(O)=O)CC( =O)OC1 | 4 | 184 | Bayer-Villiqer oxidation | 1,37 | 1,18 | 8 |
17 | 37 | CC1(C)CC(=O) OCC(C)(C(O)=O)C1 | 4 | 184 | Bayer-Villiqer oxidation | 1,37 | 1,18 | 5 |
18 | 73 | CC{CC{C){C)C)C{O)=O | 8 | 216 | Decarboxylation | 1,082 | 2,85 | 20 |
19 | 26 | CC1(C)CC(N)CC(CN)(C(O)=O)C1 | 3 | 66 | Aldehyde Oxidation | 0,8757 | -2,54 | 25 |
20 | 85 | CC(=CC(C)(C)C)C(0)=0 | 10 | 315 | Beta-oxidation | 0,8469 | 2,76 | 29 |
21 | 90 | CC(C(O)C(C)(C)C)C(O)=O | 11 | 310 | Beta-oxidation | 0,7361 | 1,31 | 27 |
22 | 102 | CC/C/=O)C/C)/C)C)C/O)=O | 13 | 71 | Keto-enol tautomerism | 0,6399 | 0,80 | 41 |
23 | 77 | CC(CC(O)=O)(CC(C)(CN)C(O)=O)C(O)=O | 8 | 66 | Aldehyde oxidation | 0,4864 | -3,94 | 36 |
24 | 60 | CC(CC(O)=O)(CC{C)(CO)C(O)=O)CN | 6 | 309 | Ester hydrolysis | 0,4158 | -4,17 | 8 |
25 | 76 | CC(CC(O)=O)(CC(C)(CO)C(O)=O)C(O)=O | 8 | 487 | Methyl group oxidation | 0,3756 | -0,73 | 0 |
26 | 112 | CC/=C/O)C/C)(O)CC(O)=O)C/O)=O | 16 | 315 | Beta-oxidation | 0,3542 | -1,00 | 89 |
27 | 70 | CC(C)(CC(C)(CO)C(O)=O)CN | 7 | 346 | Decarboxylation | 0,3304 | -2,83 | 7 |
28 | 105 | CC(C)(C)CCC(O)=O | 13 | 319 | Decarboxylation | 0,2703 | 2,43 | 32 |
29 | 104 | CC(CC(C)(O)CC(O)=O)C(O)=O | 13 | 216 | Decarboxylation | 0,2699 | -0,44 | 66 |
30 | 79 | CC(C)(CC(CC(O)=O)(CN)C(O)=O)C(O)=O | 8 | 66 | Aldehyde oxidation | 0,2432 | -3,94 | 25 |
31 | 61 | CC(C)(CC(O)=O)CC(CN)(CO)C(O)=O | 6 | 309 | Ester hydrolysis | 0,2079 | -4,17 | 31 |
32 | 106 | CC(C)(CC(=O)CC(O)=O)C(O)=O | 13 | 340 | Decarboxylation | 0,1833 | -0,95 | 28 |
33 | 71 | CC(C)(C)CC(CN)(CO)C(0)=0 | 7 | 346 | Decarboxylation | 0,1652 | -2,83 | 32 |
34 | 50 | CC1{CN)CC{=O)OCC{C){C{O)=O)C1 | 5 | 184 | Bayer-Villiaer oxidation | 0,1618 | -3,49 | 11 |
35 | 49 | CC1/C/Ol=OlCC/=OlOCC/Cl/CNlC1 | 5 | 184 | Baver-Villiaer oxidation | 0,1618 | -3,49 | 28 |
36 | 110 | CC/C)/CO)C/O)=O | 15 | 487 | Methvl arouo oxidation | 0,157 | -0,02 | 0 |
37 | 101 | CC(C)CC(CC(O)=O)C(O)=O | 12 | 216 | Decarboxylation | 0,135 | 1,06 | 72 |
38 | 9 | CC1(C)CC(N)C(=O )OC(C)(CN)C1 | 1 | 747 | Bayer-Villiger oxidation | 0,1068 | -0,60 | 17 |
39 | 8 | CC1 (C )CC( C)( CN)CC( N)C( =0)01 | 1 | 747 | Bayer-Villiger oxidation | 0,1068 | -0,60 | 14 |
40 | 44 | CC(C)(CC(=O)CC(C){O)C=O)C(O)=O | 4 | 357 | Oxidative deamination and N-dealkylation | 0,0988 | -1,21 | 34 |
41 | 41 | CC(C)(O)CC(=O)CC{C){C=O)C{0)=0 | 4 | 357 | Oxidative deamination and N-dealkylation | 0,0988 | -1,21 | 68 |
42 | 21 | CC(C)(CC(N)CC(C)(O)CN)C(O)=O | 2 | 309 | Ester hydrolvsis | 0,09499 | -3,89 | 23 |
43 | 18 | CC(C)(O)CC( N)CC(C)(CN)C(O)=O | 2 | 309 | Ester hydrolvsis | 0,09499 | -3,89 | 39 |
44 | 100 | CC(C)(CC(O)(CC(O)=O)C(O)=O)C(O)=O | 12 | 164 | Beta-oxidation | 0,08658 | -0,61 | 25 |
45 | 52 | CC1(C)CC{CN){C/O)=O)CC/=O)OC1 | 5 | 184 | Bayer-Villiaer oxidation | 0,08092 | -3,49 | 31 |
46 | 51 | CC1(C)CC(=O)OCC(CN)(C(O)=O)C1 | 5 | 184 | Bayer-Villiaer oxidation | 0,08092 | -3,49 | 29 |
47 | 86 | CC(CC(C)(CO)C(O)=O)(CO)C(O)=O | 10 | 487 | Methyl ciroup oxidation | 0,07865 | -1,04 | 0 |
48 | 91 | CC(CC(C)(CC(O)=O)C(O)=O)C(O)=O | 11 | 216 | Decarboxylation | 0,07059 | 0,28 | 34 |
49 | 64 | CC(C)(C)CC(C)(O)C=O | 6 | 357 | Oxidative deamination and N-dealkylation | 0,06711 | 1,09 | 25 |
50 | 63 | CC(C)(O)CC(C)(C)C=O | 6 | 357 | Oxidative deamination and N-dealkylation | 0,06711 | 1,09 | 8 |
51 | 109 | CC(=CC(C)(O)CC(O)=O)C(O)=O | 14 | 164 | Beta-oxidation | 0,0613 | -0,53 | 70 |
52 | 32 | CC( C)( CC(=O) CC(C)(0)CN)C( 0)=0 | 3 | 356 | Oxidative deamination and N-dealkylation | 0,05934 | -4,39 | 23 |
53 | 29 | CC( C)( O)CC( =O)CC(C)( CN)C( 0)=0 | 3 | 356 | Oxidative deamination and N-dealkylation | 0,05934 | -4,39 | 45 |
54 | 1 | CC1(C)CC(=O)CC(C)(CN)C1 | 1 | 762 | Oxidative deamination and N-dealkylation | 0,05626 | 1,40 | 28 |
55 | 111 | CC(C(O)C(C)(O)CC(O)=O)C(O)=O | 15 | 310 | Beta-oxidation | 0,05328 | -1,57 | 74 |
56 | 43 | CC(Cl{CC{O)=O)CC{Cl{O)CN | 4 | 123 | Decarboxvlation | 0,05073 | -2,83 | 20 |
57 | 42 | CC(C)(O)CC(C)(CC(O)=O)CN | 4 | 123 | Decarboxylation | 0,05073 | -2,83 | 12 |
58 | 54 | CC(C){C)CC(C)(O)CN | 5 | 346 | Decarboxylation | 0,04031 | 1,11 | 18 |
59 | 53 | CC(C)(O)CC(C)(C)CN | 5 | 346 | Decarboxylation | 0,04031 | 1,11 | 13 |
60 | 10 | CC1(C)CC(N)CC(C)(CN)OC1=O | 1 | 747 | Bayer-Villiger oxidation | 0,0316 | -0,60 | 25 |
61 | 7 | CC1(C)CC(N)CC(C)(CN)C(=0)01 | 1 | 747 | Bayer-Villiqer oxidation | 0,0316 | -0,60 | 44 |
62 | 6 | CC1 (C)CC( C)( CN)CC( N)OC1=O | 1 | 747 | Bayer-Villiqer oxidation | 0,0316 | 1,15 | 13 |
63 | 5 | CC1(C)CC(N)OC(=O)C(C)(CN)C1 | 1 | 747 | Bayer-Villiqer oxidation | 0,0316 | 1,15 | 24 |
64 | 20 | CC1(C)CC(=O)C(=O)OC(C)(CN)C1 | 2 | 356 | Oxidative deamination and N-dealkylation | 0,01975 | 0,93 | 24 |
65 | 19 | CC1(C)CC( C)(CN)CC(=O)C(=0)01 | 2 | 356 | Oxidative deamination and N-dealkylation | 0,01975 | 0,93 | 16 |
66 | 81 | CC(CC/CC/O)=O)/CO)C/O)=O)/CO)C/O)=O | 9 | 488 | Methvl arouo oxidation | 0,01467 | -1,49 | 0 |
67 | 80 | CC(CC(O)=O)(CC(CO)(CO)C(O)=O)C(O)=O | 9 | 488 | Methyl ciroup oxidation | 0,01467 | -1,79 | 0 |
68 | 99 | CC(C)(C)CC(C(O)=O)C(O)=O | 12 | 66 | Aldehyde oxidation | 0,004702 | 1,03 | 37 |
69 | 97 | CC(=CC(C)(CC(O)=O)C(O)=O)C(O)=O | 12 | 315 | Beta-oxidation | 0,0004693 | 0,20 | 62 |
70 | 2 | CC1(C)CC(N)CC(C)(C=O)C1 | 1 | 357 | Oxidative deamination and N-dealkylation | 0,000395 | 1,88 | 12 |
71 | 36 | CC/C)/CC/C)/CC/O)=O)CN)C=O | 4 | 93 | Primarv hvdroxvl arouo oxidation | 0,0001756 | -2,37 | 10 |
72 | 34 | CC/C)/CC/O)=OlCC/C)/CN)C=O | 4 | 93 | Primarv hvdroxvl arouo oxidation | 0,0001756 | -2,37 | 26 |
73 | 23 | CC(C)(CC(C)(CC( O)=O)CN)CO | 3 | 309 | Ester hydrolvsis | 0,0001756 | -2,34 | 10 |
74 | 22 | CC(C)(CC(O)=O)CC(C)(CN)CO | 3 | 309 | Ester hydrolvsis | 0,0001756 | -2,34 | 26 |
75 | 58 | CC/Cl/CC/C)/CC/Ol=O)C/O)=O)C=O | 6 | 93 | Primarv hvdroxvl arouo oxidation | 0,0001097 | 0,48 | 5 |
76 | 48 | CC(C)(CC(C)(CC(O)=O)C(O)=O)CO | 5 | 309 | Ester hydrolvsis | 0,0001097 | 0,51 | 5 |
77 | 56 | CC(C)(CC(C)(C)C=O)C(O)=O | 6 | 357 | Oxidative deamination and N-dealkylation | 0,00007558 | 1,81 | 5 |
78 | 55 | CC(C)(C)CC(C)(C=O)C(0)=0 | 6 | 357 | Oxidative deamination and N-dealkylation | 0,00007558 | 1,81 | 30 |
79 | 96 | CC/=C/O)C/C)/C)C)C/O)=O | 12 | 315 | Beta-oxidation | 0,00004894 | 1,88 | 41 |
80 | 14 | CC1/C=O)CC/N)CC/C)/CN)C1 | 2 | 93 | Primarv hvdroxvl arouo oxidation | 0,00004668 | 0,41 | 21 |
81 | 3 | CC1(C O)CC( N)CC(C)( CN)C1 | 1 | 487 | Methyl i:iroup oxidation | 0,00004668 | 0,44 | 21 |
82 | 108 | CCC/O)=O | 14 | 319 | Decarboxylation | 0,00004254 | 0,58 | 100 |
83 | 15 | CC1/C)CC/ N)CC/CN)/C=O)C1 | 2 | 93 | Primarv hvdroxvl arouo oxidation | 0,00002334 | 0,41 | 28 |
84 | 4 | CC1(C)CC(N)CC(CN)(CO)C1 | 1 | 488 | Methyl i:iroup oxidation | 0,00002334 | 0,44 | 28 |
85 | 75 | CC(C)(CC(C)(CO)C(O)=O)C=O | 8 | 357 | Oxidative deamination and N-dealkylation | 0,00001591 | 0,35 | 5 |
86 | 69 | CC(CC(O)=O){CC(C)(CN)C=O)C(O)=O | 7 | 93 | Primary hydroxvl arouo oxidation | 0,00001296 | -4,19 | 39 |
87 | 59 | CC{CC(O)=O)(CC(C){CN)CO)C(O)=O | 6 | 309 | Ester hydrolvsis | 0,00001296 | -4,17 | 39 |
88 | 67 | CC{Cl/CC/Cl/CO)C/O)=O)CO | 7 | 487 | Mettwl arouo oxidation | 0,00001041 | 0,78 | 5 |
89 | 82 | CC(CC(O)=O)(CC(C)(C=O)C(O)=O)C(O)=O | 9 | 357 | Oxidative deamination and N-dealkylation | 0,000008098 | -0,76 | 54 |
90 | 65 | CC{C){C)CC{C){C{O)=O)C{O)=O | 7 | 66 | Aldehyde oxidation | 0,000007558 | 1,48 | 27 |
91 | 72 | CC(C){CC{CC{O)=O){CN)C{O)=O)C=O | 7 | 93 | Primary hydroxvl ciroup oxidation | 0,000006481 | -4,19 | 29 |
92 | 62 | CC(C)(CC(CC(O)=O)(CN)C(O)=O)CO | 6 | 309 | Ester hydrolysis | 0,000006481 | -4,17 | 29 |
93 | 103 | CC(CC(O)=O)C=C/C)C/O)=O | 13 | 216 | Decarboxylation | 0,000004688 | 0,98 | 71 |
94 | 84 | CC(C)(CC(CC(O)=O)(C=O)C(O)=O)C(O)=O | 9 | 357 | Oxidative deamination and N-dealkylation | 0,000004049 | -0,76 | 37 |
95 | 93 | CC(C)(C)CC(C=O)C(0)=0 | 11 | 93 | Primary hydroxvl ciroup oxidation | 0,00000275 | 1,36 | 40 |
96 | 88 | CC(C)(C)CC(CO)C(O)=O | 10 | 216 | Decarboxylation | 0,00000275 | 1,38 | 40 |
97 | 78 | CC(C)(C)CC(CO)(C=O)C(0)=0 | 8 | 357 | Oxidative deamination and N-dealkylation | 0,00000275 | 0,35 | 44 |
98 | 94 | CC(C)(CC(CC(O)=O)C/O)=O)C(0)=0 | 11 | 216 | Decarboxylation | 0,000002699 | 0,28 | 29 |
99 | 92 | CC(CC(O)=O)CC(C)(C(O)=O)C(O)=O | 11 | 216 | Decarboxylation | 0,000002699 | 0,28 | 62 |
100 | 28 | CC(C)(CC(C)(CC=O)CN)C(O)=O | 3 | 37 | Oxidative deamination and N-dealkylation | 0,000002531 | -2,37 | 10 |
101 | 27 | CC(C)(CC=O)CC( C)(CN)C(0)=0 | 3 | 37 | Oxidative deamination and N-dealkylation | 0,000002531 | -2,37 | 26 |
102 | 17 | CC/C)/CC/C)/CC/N)O) CN)C/ 0)=0 | 2 | 309 | Ester hvdrolvsis | 0,000002531 | -3,89 | 10 |
103 | 16 | CC/C)/CC/N)O)CC/C)/CN)C/O)=O | 2 | 309 | Ester hvdrolvsis | 0,000002531 | -3,89 | 26 |
104 | 31 | CC( C)( CC(=O) C(O)=O)CC( C)( O)CN | 3 | 309 | Ester hydrolysis | 0,000001581 | -0,96 | 24 |
105 | 30 | CC( C)( O)CC( C)( CC(=O)C(O)=O)CN | 3 | 309 | Ester hydrolysis | 0,000001581 | -0,96 | 16 |
106 | 83 | CC(C)(C)CC(CO)(C(O)=O)C(0)=0 | 9 | 66 | Aldehyde oxidation | 0,000000275 | 0,01 | 42 |
107 | 98 | CC(0)(CC(0)=O)CC(C)(C(0)=O)C(O)=O | 12 | 164 | Beta-oxidation | 2,699E-07 | -1,22 | 60 |
108 | 95 | CC(C)CC(CC(O)=O)(C(O)=O)C(O)=O | 11 | 216 | Decarboxylation | 0,000000135 | 0,28 | 56 |
109 | 24 | CC1(C)CC(=O)CC( C)(C(O)=O)C1 | 3 | 356 | Oxidative deamination and N-dealkylation | 2,5E-09 | 1,63 | 10 |
110 | 87 | CC/CC/O)=O)/CC/C\/C/O\=O)C/O)=O)C/O)=O | 10 | 66 | Aldehvde Oxidation | 8E-10 | -0,50 | 51 |
111 | 89 | CC(C)(CC(CC(O)=O)(C(O)=O)C(O)=O)C(O)=O | 10 | 66 | Aldehyde oxidation | 4E-10 | -0,50 | 34 |
112 | 39 | CC1(C(O)=O)CC(=O)CC(C)(CN)C1 | 4 | 356 | Oxidative deamination and N-dealkylation | 3E-10 | -3,04 | 22 |
113 | 40 | CC1(C)CC(=O)CC(CN)(C(O)=O)C1 | 4 | 356 | Oxidative deamination and N-dealkylation | 1E-10 | -3,04 | 33 |
Conclusion:
Overall predicted metabolites: 112 metabolits
40 metabolites: quantity > 0.1%; thereof: 4 RBD and 40 log Kow <3.
All relevant predicted metabolites are neither PBT nor vP/vB
T: not assessed as no critical combination nRBD (~P/vP) plus log Kow >3 (~B/vB)
-Concomitant predictions:
Not ready degradable
Primary Half Life = 9.24 days
Ultimae Half Life = 3m 27d
- Predicted value (model result): O2 -consumption (BOD) = 0.15 ± 0.0172
Predicted metabolites:
Table: QSAR prediction for CAS 2855-13-2 (3-aminomethyl-3,5,5-trimethylcyclohexylamine (IPDA) using CATALOGIC 301 C v .09.13 - June, 2016; metabolites with a quantity > 0. 1 % parent after 28 d are highlighted by bold type; metabolite no: according to (Q)SAR model Catalogic v09.13)
No | Metabolite no | Smiles | Level | Transformation no | Transformation name | Quantity (%) | Log Kow | BOD prediction % 80D (28 d) |
1 | 13 | CC1(C)CC(N)CC(C)(C(O )=O}C1 | 2 | 66 | Aldehyde Oxidation | 14,82 | -1,06 | 9 |
2 | Parent | CC1(C)CC(N)CC(C)(CN)C1 | 0 |
|
| 12,23 | 1,90 | 15 |
3 | 66 | CC(C)(CC(C)(C)C(O)=O)C(O)=O | 7 | 66 | Aldehyde Oxidation | 7,011 | 1,48 | 0 |
4 | 68 | CC(C)(CC(C)(CC(O)=O)C(O)=O)C(O)=O | 7 | 66 | Aldehyde oxidation | 10,56 | 0,73 | 0 |
5 | 57 | CC(C)(C)CC(C)(CO)C(O)=O | 6 | 346 | Decarboxylation | 6,41 | 1,84 | 1 |
6 | 35 | CC/C)/CC/C)/CC/0)=0)CN)C/0)=0 | 4 | 66 | Aldehvde Oxidation | 5,713 | -2,70 | 7 |
7 | 33 | CC/C)/CC/O)=OlCC/C)/CN)C/0)=0 | 4 | 66 | Aldehvde Oxidation | 5,713 | -2,70 | 22 |
8 | 46 | CC(C)(CC(C)(C)CN)C(O)=O | 5 | 346 | Decarboxylation | 4,54 | -1,37 | 8 |
9 | 45 | CC{C){C)CC{C){CN)C{O)=O | 5 | 346 | Decarboxylation | 4,54 | -1,37 | 22 |
10 | 107 | CC(C)(C)C(O)=O | 14 | 319 | Decarboxylation | 4,097 | 1,45 | 0 |
11 | 47 | CC(C)(CC(O)=O)CC(C)(CO)C(0)=O | 5 | 309 | Ester hydrolysis | 3,519 | 0,51 | 1 |
12 | 12 | CC1(C)CC(C)(CN)CC( =O) OC1 | 2 | 184 | Bayer-Villiger oxidation | 2,192 | 0,95 | 13 |
13 | 11 | CC1(C)CC(=O)OCC(C)(CN)C1 | 2 | 184 | Bayer-Villiger oxidation | 2,192 | 0,95 | 17 |
14 | 74 | CC/Cl/CC/Cl/CO)C/Ol=OlC/O)=O | 8 | 487 | Methvl arouo oxidation | 2,06 | 0,01 | 0 |
15 | 25 | CC1(C(O)=O)CC(N)CC(C)(CN)C1 | 3 | 66 | Aldehyde Oxidation | 1,751 | -2,54 | 18 |
16 | 38 | CC1(C)CC( C)(C(O)=O)CC( =O)OC1 | 4 | 184 | Bayer-Villiqer oxidation | 1,37 | 1,18 | 8 |
17 | 37 | CC1(C)CC(=O) OCC(C)(C(O)=O)C1 | 4 | 184 | Bayer-Villiqer oxidation | 1,37 | 1,18 | 5 |
18 | 73 | CC{CC{C){C)C)C{O)=O | 8 | 216 | Decarboxylation | 1,082 | 2,85 | 20 |
19 | 26 | CC1(C)CC(N)CC(CN)(C(O)=O)C1 | 3 | 66 | Aldehyde Oxidation | 0,8757 | -2,54 | 25 |
20 | 85 | CC(=CC(C)(C)C)C(0)=0 | 10 | 315 | Beta-oxidation | 0,8469 | 2,76 | 29 |
21 | 90 | CC(C(O)C(C)(C)C)C(O)=O | 11 | 310 | Beta-oxidation | 0,7361 | 1,31 | 27 |
22 | 102 | CC/C/=O)C/C)/C)C)C/O)=O | 13 | 71 | Keto-enol tautomerism | 0,6399 | 0,80 | 41 |
23 | 77 | CC(CC(O)=O)(CC(C)(CN)C(O)=O)C(O)=O | 8 | 66 | Aldehyde oxidation | 0,4864 | -3,94 | 36 |
24 | 60 | CC(CC(O)=O)(CC{C)(CO)C(O)=O)CN | 6 | 309 | Ester hydrolysis | 0,4158 | -4,17 | 8 |
25 | 76 | CC(CC(O)=O)(CC(C)(CO)C(O)=O)C(O)=O | 8 | 487 | Methyl group oxidation | 0,3756 | -0,73 | 0 |
26 | 112 | CC/=C/O)C/C)(O)CC(O)=O)C/O)=O | 16 | 315 | Beta-oxidation | 0,3542 | -1,00 | 89 |
27 | 70 | CC(C)(CC(C)(CO)C(O)=O)CN | 7 | 346 | Decarboxylation | 0,3304 | -2,83 | 7 |
28 | 105 | CC(C)(C)CCC(O)=O | 13 | 319 | Decarboxylation | 0,2703 | 2,43 | 32 |
29 | 104 | CC(CC(C)(O)CC(O)=O)C(O)=O | 13 | 216 | Decarboxylation | 0,2699 | -0,44 | 66 |
30 | 79 | CC(C)(CC(CC(O)=O)(CN)C(O)=O)C(O)=O | 8 | 66 | Aldehyde oxidation | 0,2432 | -3,94 | 25 |
31 | 61 | CC(C)(CC(O)=O)CC(CN)(CO)C(O)=O | 6 | 309 | Ester hydrolysis | 0,2079 | -4,17 | 31 |
32 | 106 | CC(C)(CC(=O)CC(O)=O)C(O)=O | 13 | 340 | Decarboxylation | 0,1833 | -0,95 | 28 |
33 | 71 | CC(C)(C)CC(CN)(CO)C(0)=0 | 7 | 346 | Decarboxylation | 0,1652 | -2,83 | 32 |
34 | 50 | CC1{CN)CC{=O)OCC{C){C{O)=O)C1 | 5 | 184 | Bayer-Villiaer oxidation | 0,1618 | -3,49 | 11 |
35 | 49 | CC1/C/Ol=OlCC/=OlOCC/Cl/CNlC1 | 5 | 184 | Baver-Villiaer oxidation | 0,1618 | -3,49 | 28 |
36 | 110 | CC/C)/CO)C/O)=O | 15 | 487 | Methvl arouo oxidation | 0,157 | -0,02 | 0 |
37 | 101 | CC(C)CC(CC(O)=O)C(O)=O | 12 | 216 | Decarboxylation | 0,135 | 1,06 | 72 |
38 | 9 | CC1(C)CC(N)C(=O )OC(C)(CN)C1 | 1 | 747 | Bayer-Villiger oxidation | 0,1068 | -0,60 | 17 |
39 | 8 | CC1 (C )CC( C)( CN)CC( N)C( =0)01 | 1 | 747 | Bayer-Villiger oxidation | 0,1068 | -0,60 | 14 |
40 | 44 | CC(C)(CC(=O)CC(C){O)C=O)C(O)=O | 4 | 357 | Oxidative deamination and N-dealkylation | 0,0988 | -1,21 | 34 |
41 | 41 | CC(C)(O)CC(=O)CC{C){C=O)C{0)=0 | 4 | 357 | Oxidative deamination and N-dealkylation | 0,0988 | -1,21 | 68 |
42 | 21 | CC(C)(CC(N)CC(C)(O)CN)C(O)=O | 2 | 309 | Ester hydrolvsis | 0,09499 | -3,89 | 23 |
43 | 18 | CC(C)(O)CC( N)CC(C)(CN)C(O)=O | 2 | 309 | Ester hydrolvsis | 0,09499 | -3,89 | 39 |
44 | 100 | CC(C)(CC(O)(CC(O)=O)C(O)=O)C(O)=O | 12 | 164 | Beta-oxidation | 0,08658 | -0,61 | 25 |
45 | 52 | CC1(C)CC{CN){C/O)=O)CC/=O)OC1 | 5 | 184 | Bayer-Villiaer oxidation | 0,08092 | -3,49 | 31 |
46 | 51 | CC1(C)CC(=O)OCC(CN)(C(O)=O)C1 | 5 | 184 | Bayer-Villiaer oxidation | 0,08092 | -3,49 | 29 |
47 | 86 | CC(CC(C)(CO)C(O)=O)(CO)C(O)=O | 10 | 487 | Methyl ciroup oxidation | 0,07865 | -1,04 | 0 |
48 | 91 | CC(CC(C)(CC(O)=O)C(O)=O)C(O)=O | 11 | 216 | Decarboxylation | 0,07059 | 0,28 | 34 |
49 | 64 | CC(C)(C)CC(C)(O)C=O | 6 | 357 | Oxidative deamination and N-dealkylation | 0,06711 | 1,09 | 25 |
50 | 63 | CC(C)(O)CC(C)(C)C=O | 6 | 357 | Oxidative deamination and N-dealkylation | 0,06711 | 1,09 | 8 |
51 | 109 | CC(=CC(C)(O)CC(O)=O)C(O)=O | 14 | 164 | Beta-oxidation | 0,0613 | -0,53 | 70 |
52 | 32 | CC( C)( CC(=O) CC(C)(0)CN)C( 0)=0 | 3 | 356 | Oxidative deamination and N-dealkylation | 0,05934 | -4,39 | 23 |
53 | 29 | CC( C)( O)CC( =O)CC(C)( CN)C( 0)=0 | 3 | 356 | Oxidative deamination and N-dealkylation | 0,05934 | -4,39 | 45 |
54 | 1 | CC1(C)CC(=O)CC(C)(CN)C1 | 1 | 762 | Oxidative deamination and N-dealkylation | 0,05626 | 1,40 | 28 |
55 | 111 | CC(C(O)C(C)(O)CC(O)=O)C(O)=O | 15 | 310 | Beta-oxidation | 0,05328 | -1,57 | 74 |
56 | 43 | CC(Cl{CC{O)=O)CC{Cl{O)CN | 4 | 123 | Decarboxvlation | 0,05073 | -2,83 | 20 |
57 | 42 | CC(C)(O)CC(C)(CC(O)=O)CN | 4 | 123 | Decarboxylation | 0,05073 | -2,83 | 12 |
58 | 54 | CC(C){C)CC(C)(O)CN | 5 | 346 | Decarboxylation | 0,04031 | 1,11 | 18 |
59 | 53 | CC(C)(O)CC(C)(C)CN | 5 | 346 | Decarboxylation | 0,04031 | 1,11 | 13 |
60 | 10 | CC1(C)CC(N)CC(C)(CN)OC1=O | 1 | 747 | Bayer-Villiger oxidation | 0,0316 | -0,60 | 25 |
61 | 7 | CC1(C)CC(N)CC(C)(CN)C(=0)01 | 1 | 747 | Bayer-Villiqer oxidation | 0,0316 | -0,60 | 44 |
62 | 6 | CC1 (C)CC( C)( CN)CC( N)OC1=O | 1 | 747 | Bayer-Villiqer oxidation | 0,0316 | 1,15 | 13 |
63 | 5 | CC1(C)CC(N)OC(=O)C(C)(CN)C1 | 1 | 747 | Bayer-Villiqer oxidation | 0,0316 | 1,15 | 24 |
64 | 20 | CC1(C)CC(=O)C(=O)OC(C)(CN)C1 | 2 | 356 | Oxidative deamination and N-dealkylation | 0,01975 | 0,93 | 24 |
65 | 19 | CC1(C)CC( C)(CN)CC(=O)C(=0)01 | 2 | 356 | Oxidative deamination and N-dealkylation | 0,01975 | 0,93 | 16 |
66 | 81 | CC(CC/CC/O)=O)/CO)C/O)=O)/CO)C/O)=O | 9 | 488 | Methvl arouo oxidation | 0,01467 | -1,49 | 0 |
67 | 80 | CC(CC(O)=O)(CC(CO)(CO)C(O)=O)C(O)=O | 9 | 488 | Methyl ciroup oxidation | 0,01467 | -1,79 | 0 |
68 | 99 | CC(C)(C)CC(C(O)=O)C(O)=O | 12 | 66 | Aldehyde oxidation | 0,004702 | 1,03 | 37 |
69 | 97 | CC(=CC(C)(CC(O)=O)C(O)=O)C(O)=O | 12 | 315 | Beta-oxidation | 0,0004693 | 0,20 | 62 |
70 | 2 | CC1(C)CC(N)CC(C)(C=O)C1 | 1 | 357 | Oxidative deamination and N-dealkylation | 0,000395 | 1,88 | 12 |
71 | 36 | CC/C)/CC/C)/CC/O)=O)CN)C=O | 4 | 93 | Primarv hvdroxvl arouo oxidation | 0,0001756 | -2,37 | 10 |
72 | 34 | CC/C)/CC/O)=OlCC/C)/CN)C=O | 4 | 93 | Primarv hvdroxvl arouo oxidation | 0,0001756 | -2,37 | 26 |
73 | 23 | CC(C)(CC(C)(CC( O)=O)CN)CO | 3 | 309 | Ester hydrolvsis | 0,0001756 | -2,34 | 10 |
74 | 22 | CC(C)(CC(O)=O)CC(C)(CN)CO | 3 | 309 | Ester hydrolvsis | 0,0001756 | -2,34 | 26 |
75 | 58 | CC/Cl/CC/C)/CC/Ol=O)C/O)=O)C=O | 6 | 93 | Primarv hvdroxvl arouo oxidation | 0,0001097 | 0,48 | 5 |
76 | 48 | CC(C)(CC(C)(CC(O)=O)C(O)=O)CO | 5 | 309 | Ester hydrolvsis | 0,0001097 | 0,51 | 5 |
77 | 56 | CC(C)(CC(C)(C)C=O)C(O)=O | 6 | 357 | Oxidative deamination and N-dealkylation | 0,00007558 | 1,81 | 5 |
78 | 55 | CC(C)(C)CC(C)(C=O)C(0)=0 | 6 | 357 | Oxidative deamination and N-dealkylation | 0,00007558 | 1,81 | 30 |
79 | 96 | CC/=C/O)C/C)/C)C)C/O)=O | 12 | 315 | Beta-oxidation | 0,00004894 | 1,88 | 41 |
80 | 14 | CC1/C=O)CC/N)CC/C)/CN)C1 | 2 | 93 | Primarv hvdroxvl arouo oxidation | 0,00004668 | 0,41 | 21 |
81 | 3 | CC1(C O)CC( N)CC(C)( CN)C1 | 1 | 487 | Methyl i:iroup oxidation | 0,00004668 | 0,44 | 21 |
82 | 108 | CCC/O)=O | 14 | 319 | Decarboxylation | 0,00004254 | 0,58 | 100 |
83 | 15 | CC1/C)CC/ N)CC/CN)/C=O)C1 | 2 | 93 | Primarv hvdroxvl arouo oxidation | 0,00002334 | 0,41 | 28 |
84 | 4 | CC1(C)CC(N)CC(CN)(CO)C1 | 1 | 488 | Methyl i:iroup oxidation | 0,00002334 | 0,44 | 28 |
85 | 75 | CC(C)(CC(C)(CO)C(O)=O)C=O | 8 | 357 | Oxidative deamination and N-dealkylation | 0,00001591 | 0,35 | 5 |
86 | 69 | CC(CC(O)=O){CC(C)(CN)C=O)C(O)=O | 7 | 93 | Primary hydroxvl arouo oxidation | 0,00001296 | -4,19 | 39 |
87 | 59 | CC{CC(O)=O)(CC(C){CN)CO)C(O)=O | 6 | 309 | Ester hydrolvsis | 0,00001296 | -4,17 | 39 |
88 | 67 | CC{Cl/CC/Cl/CO)C/O)=O)CO | 7 | 487 | Mettwl arouo oxidation | 0,00001041 | 0,78 | 5 |
89 | 82 | CC(CC(O)=O)(CC(C)(C=O)C(O)=O)C(O)=O | 9 | 357 | Oxidative deamination and N-dealkylation | 0,000008098 | -0,76 | 54 |
90 | 65 | CC{C){C)CC{C){C{O)=O)C{O)=O | 7 | 66 | Aldehyde oxidation | 0,000007558 | 1,48 | 27 |
91 | 72 | CC(C){CC{CC{O)=O){CN)C{O)=O)C=O | 7 | 93 | Primary hydroxvl ciroup oxidation | 0,000006481 | -4,19 | 29 |
92 | 62 | CC(C)(CC(CC(O)=O)(CN)C(O)=O)CO | 6 | 309 | Ester hydrolysis | 0,000006481 | -4,17 | 29 |
93 | 103 | CC(CC(O)=O)C=C/C)C/O)=O | 13 | 216 | Decarboxylation | 0,000004688 | 0,98 | 71 |
94 | 84 | CC(C)(CC(CC(O)=O)(C=O)C(O)=O)C(O)=O | 9 | 357 | Oxidative deamination and N-dealkylation | 0,000004049 | -0,76 | 37 |
95 | 93 | CC(C)(C)CC(C=O)C(0)=0 | 11 | 93 | Primary hydroxvl ciroup oxidation | 0,00000275 | 1,36 | 40 |
96 | 88 | CC(C)(C)CC(CO)C(O)=O | 10 | 216 | Decarboxylation | 0,00000275 | 1,38 | 40 |
97 | 78 | CC(C)(C)CC(CO)(C=O)C(0)=0 | 8 | 357 | Oxidative deamination and N-dealkylation | 0,00000275 | 0,35 | 44 |
98 | 94 | CC(C)(CC(CC(O)=O)C/O)=O)C(0)=0 | 11 | 216 | Decarboxylation | 0,000002699 | 0,28 | 29 |
99 | 92 | CC(CC(O)=O)CC(C)(C(O)=O)C(O)=O | 11 | 216 | Decarboxylation | 0,000002699 | 0,28 | 62 |
100 | 28 | CC(C)(CC(C)(CC=O)CN)C(O)=O | 3 | 37 | Oxidative deamination and N-dealkylation | 0,000002531 | -2,37 | 10 |
101 | 27 | CC(C)(CC=O)CC( C)(CN)C(0)=0 | 3 | 37 | Oxidative deamination and N-dealkylation | 0,000002531 | -2,37 | 26 |
102 | 17 | CC/C)/CC/C)/CC/N)O) CN)C/ 0)=0 | 2 | 309 | Ester hvdrolvsis | 0,000002531 | -3,89 | 10 |
103 | 16 | CC/C)/CC/N)O)CC/C)/CN)C/O)=O | 2 | 309 | Ester hvdrolvsis | 0,000002531 | -3,89 | 26 |
104 | 31 | CC( C)( CC(=O) C(O)=O)CC( C)( O)CN | 3 | 309 | Ester hydrolysis | 0,000001581 | -0,96 | 24 |
105 | 30 | CC( C)( O)CC( C)( CC(=O)C(O)=O)CN | 3 | 309 | Ester hydrolysis | 0,000001581 | -0,96 | 16 |
106 | 83 | CC(C)(C)CC(CO)(C(O)=O)C(0)=0 | 9 | 66 | Aldehyde oxidation | 0,000000275 | 0,01 | 42 |
107 | 98 | CC(0)(CC(0)=O)CC(C)(C(0)=O)C(O)=O | 12 | 164 | Beta-oxidation | 2,699E-07 | -1,22 | 60 |
108 | 95 | CC(C)CC(CC(O)=O)(C(O)=O)C(O)=O | 11 | 216 | Decarboxylation | 0,000000135 | 0,28 | 56 |
109 | 24 | CC1(C)CC(=O)CC( C)(C(O)=O)C1 | 3 | 356 | Oxidative deamination and N-dealkylation | 2,5E-09 | 1,63 | 10 |
110 | 87 | CC/CC/O)=O)/CC/C\/C/O\=O)C/O)=O)C/O)=O | 10 | 66 | Aldehvde Oxidation | 8E-10 | -0,50 | 51 |
111 | 89 | CC(C)(CC(CC(O)=O)(C(O)=O)C(O)=O)C(O)=O | 10 | 66 | Aldehyde oxidation | 4E-10 | -0,50 | 34 |
112 | 39 | CC1(C(O)=O)CC(=O)CC(C)(CN)C1 | 4 | 356 | Oxidative deamination and N-dealkylation | 3E-10 | -3,04 | 22 |
113 | 40 | CC1(C)CC(=O)CC(CN)(C(O)=O)C1 | 4 | 356 | Oxidative deamination and N-dealkylation | 1E-10 | -3,04 | 33 |
Conclusion:
Overall predicted metabolites: 112 metabolits
40 metabolites: quantity > 0.1%; thereof: 4 RBD and 40 log Kow <3.
All relevant predicted metabolites are neither PBT nor vP/vB
T: not assessed as no critical combination nRBD (~P/vP) plus log Kow >3 (~B/vB)
Description of key information
A simulation study according to OECD 303A revealed a biodegradation of 42% after 31 days in laboratory WWTP. No data are available on degradation rates in surface water and sediment; therefore, the substance is regarded as P/vP from a precautionary point of view.
Degradation products were predicted using a QSAR model. 4 of 40 relevant degradation products are readily biodegradable.
Key value for chemical safety assessment
Additional information
QSAR-disclaimer:
In Article 13 of Regulation (EC) No 1907/2006, it is laid down that information on intrinsic properties of substances may be generated by means other than tests, provided that the conditions set out in Annex XI (of the same Regulation) are met.
According to Annex XI of Regulation (EC) No 1907/2006 (Q)SAR results can be used if (1) the scientific validity of the (Q)SAR model has been established, (2) the substance falls within the applicability domain of the (Q)SAR model, (3) the results are adequate for the purpose of classification and labelling and/or risk assessment and (4) adequate and reliable documentation of the applied method is provided.
For the assessment of the substance, (Q)SAR results were used for the prediction of potential degradation products. The criteria listed in Annex XI of Regulation (EC) No 1907/2006 are considered to be adequately fulfilled and therefore the endpoint(s) sufficiently covered and suitable for risk assessment.
Therefore, experimental simulation testing in soil is not provided.
Assessment:
A simulation study according to OECD 303A revealed a biodegradation of 42% after 31 days in laboratory WWTP.
In Annex XI, Section 3, it is laid down that testing in accordance with Annex IX and Annex X may be omitted, based on the exposure scenario(s) developed in the Chemical Safety Report (“Substance-Tailored Exposure-Driven Testing”).
In the risk assessment it is demonstrated that the manufacture and all uses of the life cycle of the substance do not pose a risk for environmental compartments. In the chemical safety report operational conditions (OC) and risk mitigating measures (RMM) define how direct or indirect exposure into the environment is prevented and it is demonstrated that the risk characterization ratios (RCRs) of the chemical safety assessment are below 1 for all compartments (see Chemical Safety Report).
Regarding exposure into the wastewater stream a simulation study according to OECD 303A was conducted demonstrating a biodegradation of 42% within 31 days.
The absence of significant exposure and risk for the environment is demonstrated and therefore, it is judged that further testing on ultimate degradation in surface water is not necessary in accordance with Annex XI Section 3 and Annex IX 9.2, column 2.
According to REACH Annex IX, 9.2.1.4, column 1, a test on biodegradation in sediment is only required for substances with a high potential for adsorption to sediment. Since the test substance has a calculated log Koc of 2.97 at pH7 it is expected to have a low potential for adsorption to soil and sediment. According to a Mackay Level I model calculation, the main target compartment for isophorone diamine will be the hydrosphere (99.8 %), followed by sediment and soil with a percentage of just 0.08 % each. Therefore, no biodegradation test in sediment is required.
The degradation products of IPDA are predicted via QSAR modelling of degradability and bioaccumulation for the PBT/vPvB assessment. None of the relevant degradation products has a high potential for adsorption to sediment considering the calculated logKow.
Moreover, in accordance with Annex XI Section 3 and Annex IX 9.2.1.4, column 2, it is demonstrated in the risk assessment that the manufacture and all uses of the lifecycle of the substance do not pose an unacceptable risk for environmental compartments. In the chemical safety report operational conditions (OC) and risk mitigating measures (RMM) define how direct or indirect exposure into the environment is prevented and it is demonstrated that the risk characterization ratios (RCRs) of the chemical safety assessment are below 1 for all compartments (see Chemical Safety Report).
No further experimental simulation testing in water has been performed although the substance is not readily biodegradable. For the persistence assessment, the substance itself is assessed to be P/vP from a precautionary point of view. Potentially forming degradation products have been predicted using a valid QSAR model (CATALOGIC 301 C v .09.13). The substance is within the applicability domain of the model. The model predicted 112 degradation products, of which 40 can be regarded as relevant based on their predicted quantity (see the corresponded endpoint study record). These relevant degradation products were evaluated with regard to their biodegradability and bioaccumulation potential based on QSAR data. 4 substances were readily biodegradable. Significant accumulation is not to be expected for all relevant biodegradation products as their logKow <3. Thus, they are neither PBT, nor vPvB.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.
