Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 200-087-7 | CAS number: 51-28-5
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Endpoint summary
Administrative data
Description of key information
Additional information
WATER COMPARTMENT
In water compartment estimated and experimental BCF values are available for 2,4-dinitrophenol.
The overall range of BCF measured in salt water is from 3.0 to 16 (EPA databank). Additional studies measured BCF values of < 0.4-0.7 and <3.7.
According to a classification scheme these BCFs suggest that the potential for bioconcentration in aquatic organisms for 2,4 -dinitrophenol is low (SRC) (NITE; Chemical Risk Information Platform (CHRIP)). Using the equation log BCF = 1.02xlogKow - 1.82 to correct the BCF due to ionization in water and a value of 1.54 for log Kow, the BCF of 2,4-DNP in fish can be estimated to be 0.56. Therefore, the concentration of 2,4-DNP in fish may be even lower than its concentration in water. (McCarty LS, Mackay D, Smith AD, et al. 1993). Furthermore, bioconcentration of dinitrophenols from water to aquatic organisms and from soil to plants is not expected to be important. No data were located on the biomagnification potential for dinitrophenols in predators that consume contaminated prey (EPA 1986a; O’Connor et al. 1990).
SOIL COMPARTMENT
Some loss of dinitrophenols from soil could occur by plant uptake. At concentrations likely to cause maximum bioaccumulation (10 mg/kg), the bioaccumulation factor (concentration in plant over concentration in soil) in lettuce, carrot (tops, peels, and root), hot pepper foliage, and fruits was <0.01 at a soil pH of 6.7-7.2.
Since dinitrophenols undergo metabolism in plants, plant accumulation of dinitrophenols due to uptake would not be significant. Since the concentration of the non-ionized form is only <0.25% of total DNP at pH 6.7, the soil pH has to be considerably lower for uptake to be significant in plants (O’Connor GA, Lujan JR, Jin Y. 1990)
Infact, in a Shea PJ, Weber JB, Overcash MR. 1983 study it has been demonstrated that the uptake and the translocation could be significant in soil with low pH where the concentration of non-ionized dinitrophenols (more readily adsorbed than the ionized form) are higher.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.

EU Privacy Disclaimer
This website uses cookies to ensure you get the best experience on our websites.