Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Physical & Chemical properties

Partition coefficient

Currently viewing:

Administrative data

Link to relevant study record(s)

Referenceopen allclose all

Endpoint:
partition coefficient
Type of information:
(Q)SAR
Adequacy of study:
weight of evidence
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
results derived from a valid (Q)SAR model, but not (completely) falling into its applicability domain, with adequate and reliable documentation / justification
Remarks:
The substance is not fully compliant with the applicability domain of the model. However, this calculation is used in a weight of evidence approach, in accordance to the REACh Regulation (EC) No 1907/2006, Annex XI General rules for adaptation of the standard testing regime set out in Annexes VII to X, 1.2. It is adequately documented and justified: the overall internal quality check in VEGA v1.1.3 indicates that the prediction is reliable with a Klimisch score of 2.
Justification for type of information:
1. SOFTWARE
VEGA version 1.1.3

2. MODEL (incl. version number)
ALogP Model v. 1.0.0

3. SMILES OR OTHER IDENTIFIERS USED AS INPUT FOR THE MODEL
See “Test material information”

4. SCIENTIFIC VALIDITY OF THE (Q)SAR MODEL
See attached information on the model provided by the developer. Further information on the OECD criteria as outlined by the applicant is provided below under "Any other information of materials and methods incl. tables"

5. APPLICABILITY DOMAIN
See attached information and information as provided in "Any other information on results incl. tables".

6. ADEQUACY OF THE RESULT
See assessment of adequacy as outlined in the "Overall remarks, attachments" section.
Reason / purpose for cross-reference:
reference to other study
Qualifier:
according to guideline
Guideline:
other: REACH Guidance on QSARs R.6
Principles of method if other than guideline:
- Software tool(s) used including version: VEGA v1.1.3
- Model(s) used: ALogP Model version 1.0.0
The model is based on the Ghose-Crippen-Viswanadhan LogP (ALogP) and consists of a regression equation based on the hydrophobicity contribution of 120 atom types as described in: A.K. Ghose and G.M. Crippen, J. Comput. Chem. 1986, 7, 565-577; V.N. Viswanadhan et al., J. Comput. Chem. 1993, 14, 1019-1026; A.K. Ghose, V.N. Viswanadhan, J.J. Wendoloski, J. Phys. Chem. A 1998, 102, 3762-3772. For the purpose of applicability domain assessment, the training set of the Meylan LogP model (9,961 compounds) has been considered, setting all molecules as belonging to the test set.
- Model description: see field 'Justification for non-standard information', 'Attached justification' and 'any other information on Material and methods'
- Justification of QSAR prediction: see field 'Justification for type of information', 'Attached justification' and/or 'overall remarks'
GLP compliance:
no
Type of method:
other: QSAR
Partition coefficient type:
octanol-water
Type:
log Pow
Partition coefficient:
2.83
Remarks on result:
other: QSAR result, no information on temperature and pH available.

For detailed information on the results please refer to the attached report.

Endpoint:
partition coefficient
Type of information:
(Q)SAR
Adequacy of study:
weight of evidence
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
results derived from a valid (Q)SAR model, but not (completely) falling into its applicability domain, with adequate and reliable documentation / justification
Remarks:
The substance is not fully compliant with the applicability domain of the model. However, this calculation is used in a weight of evidence approach, in accordance to the REACh Regulation (EC) No 1907/2006, Annex XI General rules for adaptation of the standard testing regime set out in Annexes VII to X, 1.2. It is adequately documented and justified: the overall internal quality check in VEGA v1.1.3 indicates that the prediction is reliable with a Klimisch score of 2
Justification for type of information:
1. SOFTWARE
VEGA version 1.1.3

2. MODEL (incl. version number)
Meylan/Kowwin v. 1.1.4

3. SMILES OR OTHER IDENTIFIERS USED AS INPUT FOR THE MODEL
See “Test material information”

4. SCIENTIFIC VALIDITY OF THE (Q)SAR MODEL
See attached information on the model provided by the developer. Further information on the OECD criteria as outlined by the applicant is provided below under "Any other information of materials and methods incl. tables"

5. APPLICABILITY DOMAIN
See attached information and information as provided in "Any other information on results incl. tables".

6. ADEQUACY OF THE RESULT
See assessment of adequacy as outlined in the "Overall remarks, attachments" section.
Reason / purpose for cross-reference:
reference to same study
Qualifier:
according to guideline
Guideline:
other: REACH Guidance on QSARs R.6
Principles of method if other than guideline:
- Software tool(s) used including version: VEGA v1.1.3
- Model(s) used: Meylan/Kowwin LogP Model version 1.1.4
The model is based on the Atom/Fragment Contribution (AFC) method from the work of Meylan and Howard (W.M. Meylan and P.H. Howard, Atom/fragment contribution method for estimating octanol-water partition coefficients, 1995, J. Pharm. Sci. 84: 83-92.), as implemented in the EPI Suite KOWWIN module (http://www.epa.gov/oppt/exposure/pubs/episuite.htm). The calculated model has a lower bound of -5.0 log units (all predictions lower than this value are set to -5.0). A dataset of compounds with experimental logP values has been built starting from the original dataset provided in EPI suite. The set has been processed and cleared from compounds that were replicated or that had problems with the provided molecule structure. The final dataset has 9,961 compounds.
- Model description: see field 'Justification for non-standard information', 'Attached justification' and 'any other information on Material and methods'
- Justification of QSAR prediction: see field 'Justification for type of information', 'Attached justification' and/or 'overall remarks'
GLP compliance:
no
Type of method:
other: QSAR
Partition coefficient type:
octanol-water
Type:
log Pow
Partition coefficient:
2.69
Remarks on result:
other: QSAR result, no information on temperature and pH available.

For detailed information on the results please refer to the attached report.

Endpoint:
partition coefficient
Type of information:
(Q)SAR
Adequacy of study:
weight of evidence
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
results derived from a valid (Q)SAR model, but not (completely) falling into its applicability domain, with adequate and reliable documentation / justification
Remarks:
The substance is not fully compliant with the applicability domain of the model. However, this calculation is used in a weight of evidence approach, in accordance to the REACh Regulation (EC) No 1907/2006, Annex XI General rules for adaptation of the standard testing regime set out in Annexes VII to X, 1.2. It is adequately documented and justified: the overall internal quality check in VEGA v1.1.3 indicates that the prediction is reliable with a Klimisch score of 2.
Justification for type of information:
1. SOFTWARE
VEGA version 1.1.3

2. MODEL (incl. version number)
MLogP Model v. 1.0.0

3. SMILES OR OTHER IDENTIFIERS USED AS INPUT FOR THE MODEL
See “Test material information”

4. SCIENTIFIC VALIDITY OF THE (Q)SAR MODEL
See attached information on the model provided by the developer. Further information on the OECD criteria as outlined by the applicant is provided below under "Any other information of materials and methods incl. tables"

5. APPLICABILITY DOMAIN
See attached information and information as provided in "Any other information on results incl. tables".

6. ADEQUACY OF THE RESULT
See assessment of adequacy as outlined in the "Overall remarks, attachments" section.
Reason / purpose for cross-reference:
reference to same study
Qualifier:
according to guideline
Guideline:
other: REACH Guidance on QSARs R.6
Principles of method if other than guideline:
- Software tool(s) used including version: VEGA v1.1.3
- Model(s) used: MLogP Model version 1.0.0
The model is based on the the Moriguchi LogP (MLogP) and consists of a regression equation based on 13 structural parameters as described in: I. Moriguchi, S. Hirono, Q. Liu, I. Nakagome, and Y. Matsushita, Chem. Pharm. Bull. 1992, 40, 127-130; I. Moriguchi, S. Hirono, I. Nakagome, H. Hirano, Chem. Pharm. Bull. 1994, 42, 976-978. For the purpose of applicability domain assessment, the training set of the Meylan LogP model (9,961 compounds) has been considered, setting all molecules as belonging to the test set.
- Model description: see field 'Justification for non-standard information', 'Attached justification' and 'any other information on Material and methods'
- Justification of QSAR prediction: see field 'Justification for type of information', 'Attached justification' and/or 'overall remarks'
GLP compliance:
no
Type of method:
other: QSAR
Partition coefficient type:
octanol-water
Type:
log Pow
Partition coefficient:
2.79
Remarks on result:
other: QSAR result, no information on temperature and pH available.

For detailed information on the results please refer to the attached report.

Endpoint:
partition coefficient
Type of information:
(Q)SAR
Adequacy of study:
weight of evidence
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
results derived from a valid (Q)SAR model, but not (completely) falling into its applicability domain, with adequate and reliable documentation / justification
Remarks:
The substance is not fully compliant with the applicability domain of the model. However, this calculation is used in a weight of evidence approach, in accordance to the REACh Regulation (EC) No 1907/2006, Annex XI General rules for adaptation of the standard testing regime set out in Annexes VII to X, 1.2. It is adequately documented and justified: the overall internal quality check in VEGA v1.1.3 indicates that the prediction is reliable with a Klimisch score of 2.
Justification for type of information:
1. SOFTWARE
VEGA version 1.1.3

2. MODEL (incl. version number)
ALogP Model v. 1.0.0

3. SMILES OR OTHER IDENTIFIERS USED AS INPUT FOR THE MODEL
See “Test material information”

4. SCIENTIFIC VALIDITY OF THE (Q)SAR MODEL
See attached information on the model provided by the developer. Further information on the OECD criteria as outlined by the applicant is provided below under "Any other information of materials and methods incl. tables"

5. APPLICABILITY DOMAIN
See attached information and information as provided in "Any other information on results incl. tables".

6. ADEQUACY OF THE RESULT
See assessment of adequacy as outlined in the "Overall remarks, attachments" section.
Reason / purpose for cross-reference:
reference to same study
Qualifier:
according to guideline
Guideline:
other: REACH Guidance on QSARs R.6
Principles of method if other than guideline:
- Software tool(s) used including version: VEGA v1.1.3
- Model(s) used: ALogP Model version 1.0.0
The model is based on the Ghose-Crippen-Viswanadhan LogP (ALogP) and consists of a regression equation based on the hydrophobicity contribution of 120 atom types as described in: A.K. Ghose and G.M. Crippen, J. Comput. Chem. 1986, 7, 565-577; V.N. Viswanadhan et al., J. Comput. Chem. 1993, 14, 1019-1026; A.K. Ghose, V.N. Viswanadhan, J.J. Wendoloski, J. Phys. Chem. A 1998, 102, 3762-3772. For the purpose of applicability domain assessment, the training set of the Meylan LogP model (9,961 compounds) has been considered, setting all molecules as belonging to the test set.
- Model description: see field 'Justification for non-standard information', 'Attached justification' and 'any other information on Material and methods'
- Justification of QSAR prediction: see field 'Justification for type of information', 'Attached justification' and/or 'overall remarks'
GLP compliance:
no
Type of method:
other: QSAR
Partition coefficient type:
octanol-water
Type:
log Pow
Partition coefficient:
7.07
Remarks on result:
other: QSAR result, no information on temperature and pH available.

For detailed information on the results please refer to the attached report.

Endpoint:
partition coefficient
Type of information:
(Q)SAR
Adequacy of study:
weight of evidence
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
results derived from a valid (Q)SAR model, but not (completely) falling into its applicability domain, with adequate and reliable documentation / justification
Remarks:
The substance is not fully compliant with the applicability domain of the model. However, this calculation is used in a weight of evidence approach, in accordance to the REACh Regulation (EC) No 1907/2006, Annex XI General rules for adaptation of the standard testing regime set out in Annexes VII to X, 1.2. It is adequately documented and justified: the overall internal quality check in VEGA v1.1.3 indicates that the prediction is reliable with a Klimisch score of 2.
Justification for type of information:
1. SOFTWARE
VEGA version 1.1.3

2. MODEL (incl. version number)
Meylan/Kowwin v. 1.1.4

3. SMILES OR OTHER IDENTIFIERS USED AS INPUT FOR THE MODEL
See “Test material information”

4. SCIENTIFIC VALIDITY OF THE (Q)SAR MODEL
See attached information on the model provided by the developer. Further information on the OECD criteria as outlined by the applicant is provided below under "Any other information of materials and methods incl. tables"

5. APPLICABILITY DOMAIN
See attached information and information as provided in "Any other information on results incl. tables".

6. ADEQUACY OF THE RESULT
See assessment of adequacy as outlined in the "Overall remarks, attachments" section.
Reason / purpose for cross-reference:
reference to same study
Qualifier:
according to guideline
Guideline:
other: REACH Guidance on QSARs R.6
Principles of method if other than guideline:
- Software tool(s) used including version: VEGA v1.1.3
- Model(s) used: Meylan/Kowwin LogP Model version 1.1.4
The model is based on the Atom/Fragment Contribution (AFC) method from the work of Meylan and Howard (W.M. Meylan and P.H. Howard, Atom/fragment contribution method for estimating octanol-water partition coefficients, 1995, J. Pharm. Sci. 84: 83-92.), as implemented in the EPI Suite KOWWIN module (http://www.epa.gov/oppt/exposure/pubs/episuite.htm). The calculated model has a lower bound of -5.0 log units (all predictions lower than this value are set to -5.0). A dataset of compounds with experimental logP values has been built starting from the original dataset provided in EPI suite. The set has been processed and cleared from compounds that were replicated or that had problems with the provided molecule structure. The final dataset has 9,961 compounds.
- Model description: see field 'Justification for non-standard information', 'Attached justification' and 'any other information on Material and methods'
- Justification of QSAR prediction: see field 'Justification for type of information', 'Attached justification' and/or 'overall remarks'
GLP compliance:
no
Type of method:
other: QSAR
Partition coefficient type:
octanol-water
Type:
log Pow
Partition coefficient:
7.22
Remarks on result:
other: QSAR result, no information on temperature and pH available.

For detailed information on the results please refer to the attached report.

Endpoint:
partition coefficient
Type of information:
(Q)SAR
Adequacy of study:
weight of evidence
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
results derived from a valid (Q)SAR model, but not (completely) falling into its applicability domain, with adequate and reliable documentation / justification
Remarks:
The substance is not fully compliant with the applicability domain of the model. However, this calculation is used in a weight of evidence approach, in accordance to the REACh Regulation (EC) No 1907/2006, Annex XI General rules for adaptation of the standard testing regime set out in Annexes VII to X, 1.2. It is adequately documented and justified: the overall internal quality check in VEGA v1.1.3 indicates that the prediction is reliable with a Klimisch score of 2.
Justification for type of information:
1. SOFTWARE
VEGA version 1.1.3

2. MODEL (incl. version number)
MLogP Model v. 1.0.0

3. SMILES OR OTHER IDENTIFIERS USED AS INPUT FOR THE MODEL
See “Test material information”

4. SCIENTIFIC VALIDITY OF THE (Q)SAR MODEL
See attached information on the model provided by the developer. Further information on the OECD criteria as outlined by the applicant is provided below under "Any other information of materials and methods incl. tables"

5. APPLICABILITY DOMAIN
See attached information and information as provided in "Any other information on results incl. tables".

6. ADEQUACY OF THE RESULT
See assessment of adequacy as outlined in the "Overall remarks, attachments" section.
Reason / purpose for cross-reference:
reference to same study
Qualifier:
according to guideline
Guideline:
other: REACH Guidance on QSARs R.6
Principles of method if other than guideline:
- Software tool(s) used including version: VEGA v1.1.3
- Model(s) used: MLogP Model version 1.0.0
The model is based on the the Moriguchi LogP (MLogP) and consists of a regression equation based on 13 structural parameters as described in: I. Moriguchi, S. Hirono, Q. Liu, I. Nakagome, and Y. Matsushita, Chem. Pharm. Bull. 1992, 40, 127-130; I. Moriguchi, S. Hirono, I. Nakagome, H. Hirano, Chem. Pharm. Bull. 1994, 42, 976-978. For the purpose of applicability domain assessment, the training set of the Meylan LogP model (9,961 compounds) has been considered, setting all molecules as belonging to the test set.
- Model description: see field 'Justification for non-standard information', 'Attached justification' and 'any other information on Material and methods'
- Justification of QSAR prediction: see field 'Justification for type of information', 'Attached justification' and/or 'overall remarks'
GLP compliance:
no
Type of method:
other: QSAR
Partition coefficient type:
octanol-water
Type:
log Pow
Partition coefficient:
5.04
Remarks on result:
other: QSAR result, no information on temperature and pH available.

For detailed information on the results please refer to the attached report.

Endpoint:
partition coefficient
Type of information:
experimental study
Adequacy of study:
weight of evidence
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
data from handbook or collection of data
Principles of method if other than guideline:
public available peer reviewed source
GLP compliance:
not specified
Type of method:
other: public available peer reviewed source
Partition coefficient type:
octanol-water
Type:
log Pow
Partition coefficient:
-1.67
Remarks on result:
other: No information on temperature and pH available

Description of key information

Log Pow (C10 monoster) = 2.69 (QSAR models: VEGA 1.1.3 - Meylan/Kowwin v1.1.4)

Log Pow (C10 diester) = 7.22 (QSAR models: VEGA 1.1.3 - Meylan/Kowwin v1.1.4)

Log Pow (glycerol) = -1.67 (experimental, Hansch et al. 1995)

Key value for chemical safety assessment

Additional information

Overall results

 

Table 1: For the two representative components of the substance, the Log Pow values as evaluated by the VEGA models (Meylan/KOWWIN, ALogP and MLogP) are reported. For each component, the two most similar substances identified by VEGA are also included (using their CAS number), together with their similarity degree with the target component, experimental Log Pow values and the predictions obtained by the VEGA models.

Evaluation of

Molecule / CAS

Similarity degree

Experimental Log Pow

Meylan / KOWWIN

ALogP

MLogP

C10 monoester

target

--

n.a.

2.69

2.83

2.79

3681-78-5

0.878

6.11

6.266

5.666

4.957

106-33-2

0.877

5.71

5.775

5.143

4.701

 

 

 

 

 

 

 

C10 diester

target

--

n.a.

7.22

7.07

5.08

929-77-1

0.844

10.2

10.195

9.365

6.803

20292-08-4

0.84

8.03

8.648

7.81

6.147

 

 

 

 

 

 

 

Glycerol

Glycerol

--

-1.67

n.c.

n.c.

n.c.

n.a.: not available

n.c.: not calculated

 

Discussion

The applicability domain (AD) evaluation performed by the VEGA software suggests that the two representative molecules of the target substance may be out of the models’ applicability domain. Their degree of similarity with the two most similar molecules identified in the models’ dataset is low; the experimental and predicted Log Pow values of the similar molecules are always higher compared to the target ones.

The C10 monoester component is characterized by highly polar group (the esterified glycerol) that is not present in its two most similar molecules, which are also characterized by slightly longer aliphatic carbon chains; these differences can explain the lower Log Pow of the target.

A similar situation affects also the C10 diester component. Also in this case none of the most similar molecules present the highly polar glycerol group. The most similar molecule is characterized by a very long aliphatic carbon chain (C22), explaining the high Log Pow. The second most similar substance has a lower Log Pow (more similar to that predicted for the target molecule) mainly due to its shorter carbon chains (C12 fatty acid ester with C8 fatty alcohol).

The target substance present (in much lower percentage, compared to the representative molecules here evaluated) also C8 monoesters (which will be characterized by a slightly lower Log Pow compare to C10) and C10 triesters (with much higher Log Pow).

According to analytical information, free glycerol can be also present in the final composition of the substance (maximum 10%) and is characterized by a lower Log Pow (-1.67, experimental result).

Conclusion

The Meylan/KOWWIN model gave in general better results for the most similar substances. Furthermore, the predicted values of 2.69 (C10 monoester) and 7.22 (C10 diester) represent the lowest and highest predicted Log Pow values, and can be used to define a Log Pow range for the ester constituents of the substance. Free glycerol is also present (up to 10%) and has a Log Pow of 1.67 (experimental value).