Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Environmental fate & pathways

Hydrolysis

Currently viewing:

Administrative data

Link to relevant study record(s)

Referenceopen allclose all

Endpoint:
hydrolysis
Type of information:
(Q)SAR
Adequacy of study:
weight of evidence
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
results derived from a valid (Q)SAR model and falling into its applicability domain, with adequate and reliable documentation / justification
Justification for type of information:
1. SOFTWARE
EPI Suite v4.11 Estimation Programs Interface Suite™ for Microsoft® Windows v 4.11. US EPA, United States Environmental Protection Agency, Washington, DC, USA.

2. MODEL (incl. version number)
HYDROWIN v2:00

3. SMILES OR OTHER IDENTIFIERS USED AS INPUT FOR THE MODEL
See “Test material information”

4. SCIENTIFIC VALIDITY OF THE (Q)SAR MODEL
See attached information on the model provided by the developer.

5. APPLICABILITY DOMAIN
See attached information and information as provided in "Any other information on material and methods incl. tables".

6. ADEQUACY OF THE RESULT
See assessment of adequacy as outlined in the "Overall remarks, attachments" section.
Qualifier:
according to guideline
Guideline:
other:
Version / remarks:
REACH Guidance on QSARs R.6
Principles of method if other than guideline:
- Software tool(s) used including version: EPI Suite v4.11
- Model(s) used: HYDROWIN v2:00
Full reference and details of the used formulas can be found in:
Mill, T., Haag, W., Penwell, P., Pettit, T. and Johnson, H. "Environmental Fate and Exposure Studies Development of a PC-SAR for Hydrolysis: Esters, Alkyl Halides and Epoxides". EPA Contract No. 68-02-4254: SRI International (1987).
- Model description: see field 'Justification for non-standard information', 'Attached justification' and 'any other information on material and methods'
- Justification of QSAR prediction: see field 'Justification for type of information', 'Attached justification' and/or 'overall remarks'
GLP compliance:
no
Estimation method (if used):
- Total Kb for pH > 8: 2.207E-002 L/mol sec
- Temperature for which rate constant was calculated: 25 °C
- Computer programme: HYDROWIN v2.00
Transformation products:
not specified
pH:
7
Temp.:
25 °C
DT50:
9.95 yr
pH:
8
Temp.:
25 °C
DT50:
0.995 yr

For detailed information on the results please refer to the attached report. The results refer to the uncharged molecule.

Endpoint:
hydrolysis
Type of information:
(Q)SAR
Adequacy of study:
weight of evidence
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
results derived from a valid (Q)SAR model and falling into its applicability domain, with adequate and reliable documentation / justification
Justification for type of information:
1. SOFTWARE
EPI Suite v4.11 Estimation Programs Interface Suite™ for Microsoft® Windows v 4.11. US EPA, United States Environmental Protection Agency, Washington, DC, USA.

2. MODEL (incl. version number)
HYDROWIN v2:00

3. SMILES OR OTHER IDENTIFIERS USED AS INPUT FOR THE MODEL
See “Test material information”

4. SCIENTIFIC VALIDITY OF THE (Q)SAR MODEL
See attached information on the model provided by the developer.

5. APPLICABILITY DOMAIN
See attached information and information as provided in "Any other information on material and methods incl. tables".

6. ADEQUACY OF THE RESULT
See assessment of adequacy as outlined in the "Overall remarks, attachments" section.
Qualifier:
according to guideline
Guideline:
other:
Version / remarks:
REACH Guidance on QSARs R.6
Principles of method if other than guideline:
- Software tool(s) used including version: EPI Suite v4.11
- Model(s) used: HYDROWIN v2:00
Full reference and details of the used formulas can be found in:
Mill, T., Haag, W., Penwell, P., Pettit, T. and Johnson, H. "Environmental Fate and Exposure Studies Development of a PC-SAR for Hydrolysis: Esters, Alkyl Halides and Epoxides". EPA Contract No. 68-02-4254: SRI International (1987).
- Model description: see field 'Justification for non-standard information', 'Attached justification' and 'any other information on material and methods'
- Justification of QSAR prediction: see field 'Justification for type of information', 'Attached justification' and/or 'overall remarks'
GLP compliance:
no
Estimation method (if used):
- Total Kb for pH > 2.141E-002 L/mol sec
- Temperature for which rate constant was calculated: 25 °C
- Computer programme: HYDROWIN v2.00
Transformation products:
not specified
pH:
7
Temp.:
25 °C
DT50:
10.259 yr
pH:
8
Temp.:
25 °C
DT50:
1.026 yr

For detailed information on the results please refer to the attached report. The results refer to the uncharged molecule.

Endpoint:
hydrolysis
Type of information:
(Q)SAR
Adequacy of study:
weight of evidence
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
results derived from a valid (Q)SAR model and falling into its applicability domain, with adequate and reliable documentation / justification
Justification for type of information:
1. SOFTWARE
EPI Suite v4.11 Estimation Programs Interface Suite™ for Microsoft® Windows v 4.11. US EPA, United States Environmental Protection Agency, Washington, DC, USA.

2. MODEL (incl. version number)
HYDROWIN v2:00

3. SMILES OR OTHER IDENTIFIERS USED AS INPUT FOR THE MODEL
See “Test material information”

4. SCIENTIFIC VALIDITY OF THE (Q)SAR MODEL
See attached information on the model provided by the developer.

5. APPLICABILITY DOMAIN
See attached information and information as provided in "Any other information on material and methods incl. tables".

6. ADEQUACY OF THE RESULT
See assessment of adequacy as outlined in the "Overall remarks, attachments" section.
Qualifier:
according to guideline
Guideline:
other:
Version / remarks:
REACH Guidance on QSARs R.6
Principles of method if other than guideline:
- Software tool(s) used including version: EPI Suite v4.11
- Model(s) used: HYDROWIN v2:00
Full reference and details of the used formulas can be found in:
Mill, T., Haag, W., Penwell, P., Pettit, T. and Johnson, H. "Environmental Fate and Exposure Studies Development of a PC-SAR for Hydrolysis: Esters, Alkyl Halides and Epoxides". EPA Contract No. 68-02-4254: SRI International (1987).
- Model description: see field 'Justification for non-standard information', 'Attached justification' and 'any other information on material and methods'
- Justification of QSAR prediction: see field 'Justification for type of information', 'Attached justification' and/or 'overall remarks'
GLP compliance:
no
Estimation method (if used):
- Total Kb for pH > 8: 2.207E-002 L/mol sec
- Temperature for which rate constant was calculated: 25 °C
- Computer programme: HYDROWIN v2.00
Transformation products:
not specified
pH:
7
Temp.:
25 °C
DT50:
9.95 yr
pH:
8
Temp.:
25 °C
DT50:
0.995 yr

For detailed information on the results please refer to the attached report. The results refer to the uncharged molecule.

Endpoint:
hydrolysis
Type of information:
(Q)SAR
Adequacy of study:
weight of evidence
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
results derived from a valid (Q)SAR model and falling into its applicability domain, with adequate and reliable documentation / justification
Justification for type of information:
1. SOFTWARE
EPI Suite v4.11 Estimation Programs Interface Suite™ for Microsoft® Windows v 4.11. US EPA, United States Environmental Protection Agency, Washington, DC, USA.

2. MODEL (incl. version number)
HYDROWIN v2:00

3. SMILES OR OTHER IDENTIFIERS USED AS INPUT FOR THE MODEL
See “Test material information”

4. SCIENTIFIC VALIDITY OF THE (Q)SAR MODEL
See attached information on the model provided by the developer.

5. APPLICABILITY DOMAIN
See attached information and information as provided in "Any other information on material and methods incl. tables".

6. ADEQUACY OF THE RESULT
See assessment of adequacy as outlined in the "Overall remarks, attachments" section.
Qualifier:
according to guideline
Guideline:
other:
Version / remarks:
REACH Guidance on QSARs R.6
Principles of method if other than guideline:
- Software tool(s) used including version: EPI Suite v4.11
- Model(s) used: HYDROWIN v2:00
Full reference and details of the used formulas can be found in:
Mill, T., Haag, W., Penwell, P., Pettit, T. and Johnson, H. "Environmental Fate and Exposure Studies Development of a PC-SAR for Hydrolysis: Esters, Alkyl Halides and Epoxides". EPA Contract No. 68-02-4254: SRI International (1987).
- Model description: see field 'Justification for non-standard information', 'Attached justification' and 'any other information on material and methods'
- Justification of QSAR prediction: see field 'Justification for type of information', 'Attached justification' and/or 'overall remarks'
GLP compliance:
no
Estimation method (if used):
- Total Kb for pH > 8: 6.423E-002 L/mol sec
- Temperature for which rate constant was calculated: 25 °C
- Computer programme: HYDROWIN v2.00
Transformation products:
not specified
pH:
7
Temp.:
25 °C
DT50:
3.42 yr
pH:
8
Temp.:
25 °C
DT50:
124.9 d

For detailed information on the results please refer to the attached report. The results refer to the uncharged molecule.

Description of key information

DT50: 3.42 – 10.26 years at pH 7

DT50: 124.9 days - > 1 year at pH 8

Key value for chemical safety assessment

Additional information

No experimental data on the hydrolysis of Sorbitan tridocosanoate are available. QSAR calculations, performed with representative components of the UVCB substance, indicate that abiotic degradation by hydrolysis is no relevant degradation pathway for the substance. The estimated half-lives of the substance components range from 3.42 – 10.26 years at pH 7. For pH 8 half-lives of 124.9 days to > 1 year were calculated (HYDROWIN v2.00).