Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Environmental fate & pathways

Bioaccumulation: aquatic / sediment

Currently viewing:

Administrative data

Link to relevant study record(s)

Description of key information

Key value for chemical safety assessment

Additional information

Information taken from CICAD (2006):

60Co is taken up by unicellular algae with reported concentration factors (dry weight) of 40 000 for Scenedesmus obliquus and 18 000 for Selenastrum capricornutum (Nucho et al., 1988; Corisco & Carreiro, 1999). Freshwater molluscs have concentration factors of 100–14 000 (~1–300 in soft tissue). Much of the cobalt taken up by molluscs and crustaceans from water or sediment is adsorbed to the shell or exoskeleton; very little cobalt is generally accumulated in the edible parts (Amiard & Amiard-Triquet, 1979; Smith & Carson, 1981). Similarly, in laboratory studies with Daphnia magna, adsorption to the exoskeleton was the major contamination process (Adam et al., 2001). In studies with starfish (Asterias rubens), accumulation of 57Co was found to be predominately from seawater rather than from food (Warnau et al., 1999). Bioaccumulation factors for marine fish and freshwater fish are 100–4000 and <10–1000, respectively (Smith & Carson, 1981). However, accumulation is mostly in the viscera and skin of the fish, not the edible parts of the fish (Smith & Carson, 1981). In carp (Cyprinus carpio), accumulation from water accounted for 75% of 60Co accumulated from both water and food; accumulation from water and food was additive (Baudin & Fritsch, 1989). Depuration halflives were 53 and 87 days for fish contaminated from food and water, respectively (Bandin & Fritsch, 1989). Biomagnification of cobalt up the food-chain does not occur (Smith & Carson, 1981).

The study by Baudin and Fritsch (1989) compared radio-labelled cobalt uptake (Co60) from feed, from water and from a combination of both sources. The average retention factor after 63 days was in the order of 3 to 3.5 * 10E-3. The depuration period (70 to 80%) was between 63 and 49 days for sole aqueous and for sole feed contamination, respectively. In the event of accidental pollution of a waterway by this radionuclide, the radioactivity measured in the fish after passage of the contaminated water can be considered as a maximum value.