Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Toxicological information

Genetic toxicity: in vitro

Currently viewing:

Administrative data

Endpoint:
in vitro gene mutation study in bacteria
Type of information:
experimental study
Adequacy of study:
key study
Study period:
Experimental start date: 23 October 2012. Experimental end date: 21 January 2013.
Reliability:
1 (reliable without restriction)
Rationale for reliability incl. deficiencies:
guideline study

Data source

Reference
Reference Type:
study report
Title:
Unnamed
Year:
2013
Report date:
2013

Materials and methods

Test guidelineopen allclose all
Qualifier:
according to guideline
Guideline:
OECD Guideline 471 (Bacterial Reverse Mutation Assay)
Deviations:
no
Qualifier:
according to guideline
Guideline:
EU Method B.13/14 (Mutagenicity - Reverse Mutation Test Using Bacteria)
Deviations:
no
GLP compliance:
yes (incl. QA statement)
Type of assay:
bacterial reverse mutation assay

Test material

Constituent 1
Chemical structure
Reference substance name:
N4-Benzoylcytosine
EC Number:
628-907-2
Cas Number:
26661-13-2
Molecular formula:
C11H9N3O2
IUPAC Name:
N4-Benzoylcytosine
Specific details on test material used for the study:
Sponsor's identification: N-Benzoyl Cytosine
Description: Off white powder
Chemical name: N-Benzoylcytosine
Purity: 99.8%
Batch number: NBC-5-11001
Date received: 09 July 2012
Expiry date: Not supplied
Storage conditions: Room temperature over silica gel in the dark

Method

Target gene:
Histidine locus
Species / strainopen allclose all
Species / strain / cell type:
S. typhimurium TA 1535, TA 1537, TA 98 and TA 100
Species / strain / cell type:
E. coli WP2 uvr A
Metabolic activation:
with and without
Metabolic activation system:
rats liver induced with Phenobarbitone/p-Naphthoflavone
Test concentrations with justification for top dose:
Preliminary Toxicity Test: 0, 0.15 , 0.5 , 1.5 , 5, 15 , 50, 150 , 500, 1500 and 5000 µg/plate
Mutation Test - Experiment 1 and 2: 50, 150, 500, 1500 and 5000 µg/plate
The test item caused no visible reduction in the growth of the bacterial background lawn at any dose level and was, therefore, tested up to the maximum recommended dose level of 5000 µg/plate
Vehicle / solvent:
The test item was insoluble in sterile distilled water, dimethyl sulphoxide, dimethyl formamide and acetonitrile at 50 mg/ml, acetone at 100 mg/ml and tetrahydrofuran at 200 mg/ml in solubility checks performed in-house. The test item formed the best doseable suspension in dimethyl formamide, therefore, this solvent was selected as the vehicle.
Controlsopen allclose all
Untreated negative controls:
yes
Negative solvent / vehicle controls:
yes
True negative controls:
no
Positive controls:
yes
Remarks:
2 µg/plate for WP2 uvrA
Positive control substance:
N-ethyl-N-nitro-N-nitrosoguanidine
Remarks:
without metabolic activation
Untreated negative controls:
yes
Negative solvent / vehicle controls:
yes
True negative controls:
no
Positive controls:
yes
Remarks:
3 µg/plate for TA100
Positive control substance:
N-ethyl-N-nitro-N-nitrosoguanidine
Remarks:
without metabolic activation
Untreated negative controls:
yes
Negative solvent / vehicle controls:
yes
True negative controls:
no
Positive controls:
yes
Remarks:
5 µg/plate for TA1535
Positive control substance:
N-ethyl-N-nitro-N-nitrosoguanidine
Remarks:
without metabolic activation
Untreated negative controls:
yes
Negative solvent / vehicle controls:
yes
True negative controls:
no
Positive controls:
yes
Remarks:
80 µg/plate for TA1537
Positive control substance:
9-aminoacridine
Remarks:
without metabolic activation
Untreated negative controls:
yes
Negative solvent / vehicle controls:
yes
True negative controls:
no
Positive controls:
yes
Remarks:
0.2 µg/plate for TA98
Positive control substance:
4-nitroquinoline-N-oxide
Remarks:
without metabolic activation
Untreated negative controls:
yes
Negative solvent / vehicle controls:
yes
True negative controls:
no
Positive controls:
yes
Remarks:
1 µg/plate for
Positive control substance:
other: 2-Aminoanthracene
Remarks:
with metabolic activation
Untreated negative controls:
yes
Negative solvent / vehicle controls:
yes
True negative controls:
no
Positive controls:
yes
Remarks:
2 µg/plate for TA1535 and TA1537
Positive control substance:
other: 2-Aminoanthracene
Remarks:
with metabolic activation
Untreated negative controls:
yes
Negative solvent / vehicle controls:
yes
True negative controls:
no
Positive controls:
yes
Remarks:
10 µg/plate for WP2urvA
Positive control substance:
other: 2-Aminoanthracene
Remarks:
with metabolic activation
Untreated negative controls:
yes
Negative solvent / vehicle controls:
yes
True negative controls:
no
Positive controls:
yes
Remarks:
5 µg/plate for TA98
Positive control substance:
benzo(a)pyrene
Remarks:
with metabolic activation
Details on test system and experimental conditions:
Preliminary Toxicity Test
In order to select appropriate dose levels for use in the main test, a preliminary test was carried out to determine the toxicity of the test item. The concentrations tested were 0, 0.15 , 0.5 , 1.5 , 5, 15 , 50, 150 , 500, 1500 and 5000 µg/plate. The test was performed by mixing 0.1 ml of bacterial culture (TA100 or WP2uvrA ) , 2 ml of molten, trace histidine or tryptophan supplemented, top agar, 0.1 ml of test item formulation and 0.5 ml of S9-mix or phosphate buffer and overlaying onto sterile plates of Vogel-Bonner Minimal agar (30 ml/plate). Ten concentrations of the test item formulation and a vehicle control (dimethyl formamide) were tested. In addition , 0.1 ml of the maximum concentration of the test item and 2 ml of molten, trace histidine or tryptophan supplemented, top agar were overlaid onto a sterile nutrient agar plate in order to assess the sterility of the test item. After approximately 48 hours incubation at 37 °C the plates were assessed for numbers of revertant colonies using an automated colony counter and examined for effects on the growth of the bacterial background lawn.

Mutation Test - Experiment 1
Five concentrations of the test item (50, 150, 500, 1500 and 5000 µg/plate) were assayed in triplicate against each tester strain, using the direct plate incorporation method.
Measured aliquots (0.1 ml) of one of the bacterial cultures were dispensed into sets of test tubes followed by 2 ml of molten, trace histidine or tryptophan supplemented, top agar, 0.1 ml of the test item formulation, vehicle or positive control and either 0.5 ml of S9-mix or phosphate buffer. The contents of each test tube were mixed and equally distributed onto the surface of Vogel-Bonner Minimal agar plates (one tube per plate). This procedure was repeated, in triplicate, for each bacterial strain and for each concentration of test item both with and without S9-mix. All of the plates were incubated at 37°C for approximately 48 hours and the frequency of revertant colonies assessed using an automated colony counter.

Mutation Test - Experiment 2
The second experiment was performed using fresh bacterial cultures, test item and control solutions. The test item dose range was the same as Experiment 1 (50 to 5000 µg/plate).
As it is good scientific practice to alter one condition in the replicate assay, the exposure condition was changed from plate incorporation to pre-incubation, The test item formulations and vehicle control were therefore dosed as follows:
Measured aliquots (0.1 ml) of one of the bacterial cultures were dispensed into sets of test tubes followed by 0.5 ml of S9-mix or phosphate buffer and 0.1 ml of the vehicle or test item formulation and incubated for 20 minutes at 37°C with shaking at approximately 130 rpm prior to the addition of 2 ml of molten, trace histidine or tryptophan supplemented, top agar. The contents of the tube were then mixed and equally distributed on the surface of Vogel-Bonner Minimal agar plates (one tube per plate). This procedure was repeated, in triplicate, for each bacterial strain and for each concentration of test item both with and without S9-mix. The positive and untreated controls were dosed using the standard plate incorporation method. All of the plates were incubated at 37°C for approximately 48 hours and the frequency of revertant colonies assessed using an automated colony counter.
Evaluation criteria:
There are several criteria for determining a positive result, Any, one, or all of the following can be used to determine the overall result of the study:
1. A dose-related increase in mutant frequency over the dose range tested (De Serres and Shelby (1979)).
2. A reproducible increase at one or more concentrations.
3. Biological relevance against in-house historical control ranges.
4. Statistical analysis of data as determined by UKEMS (Mahon et al (1989)).
5. Fold increase greater than two times the concurrent solvent control for any tester
strain (especially if accompanied by an out-of-historical range response).

A test item will be considered non-mutagenic (negative) in the test system if the above criteria are not met.
Although most experiments will give clear positive or negative results, in some instances the data generated will prohibit making a definite judgement about test item activity.
Results of this type will be reported as equivocal.

Results and discussion

Test resultsopen allclose all
Key result
Species / strain:
S. typhimurium TA 1535
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity
Vehicle controls validity:
valid
Untreated negative controls validity:
valid
Positive controls validity:
valid
Key result
Species / strain:
S. typhimurium TA 1537
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity
Vehicle controls validity:
valid
Untreated negative controls validity:
valid
Positive controls validity:
valid
Key result
Species / strain:
S. typhimurium TA 98
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity
Vehicle controls validity:
valid
Untreated negative controls validity:
valid
Positive controls validity:
valid
Key result
Species / strain:
S. typhimurium TA 100
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity
Vehicle controls validity:
valid
Untreated negative controls validity:
valid
Positive controls validity:
valid
Key result
Species / strain:
E. coli WP2 uvr A
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity
Vehicle controls validity:
valid
Untreated negative controls validity:
valid
Positive controls validity:
valid
Additional information on results:
Preliminary Toxicity Test
The test item was non-toxic to the strains of bacteria used (TA100 and WP2uvrA). The test item formulation and S9-mix used in this experiment were both shown to be sterile.

Mutation Test
Prior to use, the master strains were checked for characteristics, viability and spontaneous reversion rate (all were found to be satisfactory), The amino acid supplemented top agar and S9-mix used in both experiments was shown to be sterile.
The culture density for each bacterial strain was also checked and considered acceptable. These data are not given in the report.

Results for the negative controls (spontaneous mutation rates) were considered to be acceptable.
These data are for concurrent untreated control plates performed on the same day as the Mutation Test.

The test item caused no visible reduction in the growth of the bacterial background lawn at any dose level and was, therefore, tested up to the maximum recommended dose level of 5000 µg/plate. A test item precipitate (powdery in appearance) was noted at 5000 µg/plate, this observation did not prevent the scoring of revertant colonies.

No significant increases in the frequency of revertant colonies were recorded for any of the strains of bacteria , at any dose level either with or without metabolic activation or exposure method.

All of the positive control chemicals used in the test induced marked increases in the frequency of revertant colonies thus confirming the activity of the S9-mix and the sensitivity of the bacterial strains.

Applicant's summary and conclusion

Conclusions:
The test item, N-Benzoyl Cytosine , was considered to be non-mutagenic under the conditions of this test.
Executive summary:

Introduction

The test method was designed to be compatible with the guidelines for bacterial mutagenicity testing published by the major Japanese Regulatory Authorities including METI, MHLW and MAFF, the OECD Guidelines for Testing of Chemicals No. 471 "Bacterial Reverse Mutation Test", Method B13/14 of Commission Regulation (EC) number 440/2008 of 30 May 2008 and the USA, EPA (TSCA) OPPTS harmonised guidelines.

Methods

Salmonella typhimurium strains TA1535, TA1537, TA98, TA100 and Escherichia coli strain WP2uvrA were treated with the test item, N-Benzoyl Cytosine, using both the Ames plate incorporation and pre-incubation methods at five dose levels, in triplicate, both with and without the addition of a rat liver homogenate metabolising system (10% liver S9 in standard co-factors). The dose range for the first experiment was determined in a preliminary toxicity assay and was 50 to 5000 µg/plate. The experiment was repeated on a separate day (pre-incubation method) using the same dose range as Experiment 1, fresh cultures of the bacterial strains and fresh test item formulations.

Results

The vehicle (dimethyl formamide) control plates gave counts of revertant colonies within the normal range. All of the positive control reference items used in the test induced marked increases in the frequency of revertant colonies, both with or without metabolic activation. Thus, the sensitivity of the assay and the efficacy of the S9-mix were validated.

The test item caused no visible reduction in the growth of the bacterial background lawn at any dose level and was, therefore, tested up to the maximum recommended dose level of 5000 µg/plate. A test item precipitate (powdery in appearance) was noted at 5000 µg/plate, this observation did not prevent the scoring of revertant colonies. No significant increases in the frequency of revertant colonies were recorded for any of the bacterial strains, with any dose of the test item, either with or without metabolic activation or exposure method.

Conclusion

The test item, N-Benzoyl Cytosine, was considered to be non-mutagenic under the conditions of this test