Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Environmental fate & pathways

Endpoint summary

Administrative data

Description of key information

Hydrolysis

On the basis of the experimental studies of the structurally and functionally similar read across chemical and applying the weight of evidence approach, the hydrolysis half-life value of the test chemical can be expected to be > 5 days, respectively. Thus, based on this half-life value, it can be concluded that the test chemical is not hydrolysable in water.

Additional information

Hydrolysis

Data available for the structurally and functionally similar read across chemicals has been reviewed to determine the half-life of the test chemical. The studies are as mentioned below:

 

The half-life of the test chemical was determined. Although the half-life value of test chemical was not known, but test chemical was reported to be stable in aqueous environments. Based on this, it is concluded that the test chemical is not hydrolysable.

 

In an another study, the half-life of the test chemical was determined at different pH range. The study was performed according to OECD Guideline 111 (Hydrolysis as a Function of pH) at a temperature of 50°C. As the hydrolysis of test chemical did not reach > 10% in any of the pH systems, the preliminary study was terminated. Test chemical was reported to be hydrolytically stable at pH 4, 7 and 9, respectively at a temperature of 50⁰C for 5 days. Thus, half-life value can be considered to be > 5 days, indicating that the test chemical is not hydrolysable.

 

On the basis of the experimental studies of the structurally and functionally similar read across chemical and applying the weight of evidence approach, the hydrolysis half-life value of the test chemical can be expected to be > 5 days, respectively. Thus, based on this half-life value, it can be concluded that the test chemical is not hydrolysable in water.