Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Environmental fate & pathways

Endpoint summary

Administrative data

Description of key information

Additional information

Substance: According to a Mackay Level I model calculation the main target compartments for 2,2,4(or 2,4,4)-trimethylhexane-1,6-diisocyanate will be sediment (30 %) and soil (30 %) followed by the atmosphere (28 %) and the hydrosphere (12 %). The calculated Henry’s Law constant of 6.51 Pa m³/mol at 20 °C indicates moderate volatility of 2,2,4(or 2,4,4)-trimethylhexane-1,6-diisocyanate from surface waters. With a calculated Koc of 22570 l/kg, the sorption potential of 2,2,4(or 2,4,4)-trimethylhexane-1,6-diisocyanate to soil or sediment organic matter is expected to be very high (Blume scale). However, environmental transport and distribution considerations for 2,2,4(or 2,4,4)-trimethylhexane-1,6-diisocyanate are of little relevance because the reaction with water is expected to eliminate the substance from the environment rapidly.


Hydrolysis product: According to a Mackay Level I model calculation the main target compartments for 2,2,4(or 2,4,4)-trimethylhexane-1,6-diisocyanate will be the hydrosphere (99.97 %) followed by the atmosphere (0.02 %). The calculated Henry’s Law constant of 0.00063 Pa m3/mol indicates very low volatility of 2,2,4(or 2,4,4)-trimethylhexane-1,6-diamine from surface waters. With a calculated Koc = 25, log Koc = 1.40 (pH 7; Franco and Trapp (2008)), the sorption potential of 2,2,4(or 2,4,4)-trimethylhexane-1,6-diamine to soil or sediment organic matter is expected to be very low (Blume scale).