Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Administrative data

Key value for chemical safety assessment

Genetic toxicity in vitro

Link to relevant study records

Referenceopen allclose all

Endpoint:
genetic toxicity in vitro, other
Remarks:
Type of genotoxicity: gene mutation in bacteria / mammilian cell lines and chromosome abberiation
Type of information:
read-across from supporting substance (structural analogue or surrogate)
Remarks:
4 substances available for read across
Adequacy of study:
weight of evidence
Justification for type of information:
see the justification provided in section 13
Reason / purpose for cross-reference:
read-across source
Reason / purpose for cross-reference:
read-across source
Reason / purpose for cross-reference:
read-across source
Reason / purpose for cross-reference:
read-across source
Key result
Species / strain:
S. typhimurium TA 1535, TA 1537, TA 98 and TA 100
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity, but tested up to precipitating concentrations
Vehicle controls validity:
valid
Untreated negative controls validity:
not examined
Positive controls validity:
valid
Key result
Species / strain:
other: S. typhimurium TA 1535, TA 1537, TA 98 and TA 100 bacteria
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity, but tested up to precipitating concentrations
Vehicle controls validity:
other: Unacceptable vehicle control values for the tester strain TA1537 and TA 98 were repeated.
Untreated negative controls validity:
not specified
Positive controls validity:
valid
Key result
Species / strain:
S. typhimurium TA 1538
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity, but tested up to precipitating concentrations
Vehicle controls validity:
valid
Untreated negative controls validity:
not specified
Positive controls validity:
valid
Key result
Species / strain:
E. coli WP2 uvr A
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity, but tested up to precipitating concentrations
Vehicle controls validity:
valid
Positive controls validity:
valid
Key result
Species / strain:
mouse lymphoma L5178Y cells
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity, but tested up to precipitating concentrations
Remarks:
and above (precipitating concentration: 100 µg/mL, tested up to 250 µg/mL)
Vehicle controls validity:
valid
Untreated negative controls validity:
not examined
Positive controls validity:
valid
Key result
Species / strain:
Chinese hamster Ovary (CHO)
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity, but tested up to precipitating concentrations
Vehicle controls validity:
valid
Untreated negative controls validity:
not examined
Positive controls validity:
valid
Remarks on result:
other: all strains/cell types tested
Remarks:
Fatty acids, C5-9, tetraesters with pentaerythritol (CAS 67762-53-2)
Conclusions:
The substance, CAS 68424-31-7 ; EC 270-291-9, is analogous to the substances to be read across to, in terms of basic form, and the degree of substitution of functional groups is not considered to effect the proposed read across for the endpoint of mutagenicity. Based on the available information to read across to, the substance is not expected to be mutagenic.
Endpoint:
in vitro gene mutation study in bacteria
Type of information:
experimental study
Adequacy of study:
key study
Study period:
06 May - 29 Aug 1996
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
other: see 'Remark'
Remarks:
GLP - Guideline study. According to the ECHA guidance document "Practical guide 6: How to report read-across and categories (March 2010)", the reliability was changed from RL1 to RL2 to reflect the fact that this study was conducted on a read-across substance.
Qualifier:
according to guideline
Guideline:
OECD Guideline 471 (Bacterial Reverse Mutation Assay)
Version / remarks:
September 1995
Deviations:
no
Qualifier:
according to guideline
Guideline:
OECD Guideline 472 (Genetic Toxicology: Escherichia coli, Reverse Mutation Assay)
Version / remarks:
September 1995
Deviations:
no
GLP compliance:
yes
Type of assay:
bacterial reverse mutation assay
Target gene:
his operon (S. typhimurium strains)
trp operon ( E. coli strains)
Species / strain / cell type:
S. typhimurium TA 1535, TA 1537, TA 98 and TA 100
Species / strain / cell type:
S. typhimurium TA 1538
Species / strain / cell type:
E. coli WP2 uvr A
Metabolic activation:
with and without
Metabolic activation system:
co-factor supplemented post-mitochondrial fraction (S9-mix), prepared from livers of male rats treated with Aroclor 1254
Test concentrations with justification for top dose:
0, 10, 33, 100, 333 and 1000 µg/plate
Vehicle / solvent:
- Vehicle(s)/solvent(s) used: ethanol
Untreated negative controls:
no
Negative solvent / vehicle controls:
yes
True negative controls:
no
Positive controls:
yes
Remarks:
- S9: sodium azide (1 μg/plate, TA1535 and TA100); 9-aminoacridine (75 µg/plate, TA 1537); 2-nitrofluorene (1 µg/plate, TA98 and TA 1538); methylmethanesulfonate (1000 µg/plate, WP2 uvrA); +S9: 2-aminoanthracene (1 μg/pate, all strains)
Positive control substance:
9-aminoacridine
2-nitrofluorene
sodium azide
methylmethanesulfonate
other: 2-aminoanthracene
Details on test system and experimental conditions:
METHOD OF APPLICATION: in agar (plate incorporation)

DURATION
- Exposure duration: 48 to 72 h
- Expression time (cells in growth medium): 48 to 72 h

DETERMINATION OF CYTOTOXICITY
- Method: inspection of the bacterial background lawn wit a dissecting microscope
Evaluation criteria:
Revertant colonies were counted and the mean and standard deviation were calculated and compared to the controls.
All Salmonella tester strains must demonstrate the presence of the deep rough mutation and the deletion of the uvrA gene. Cultures of the TA98 and TA100 strains must demonstrate the presence of the pKM101 plasmid R-factor. All WP2 uvrA cultures must demonstrate the deletion of the uvrA gene. All cultures must demonstrate the characteristic mean number of spontaneous revertants in the vehicle controls. Tester strain titers must be above 30.000.000 cells/ml. The mean of each positive control must be at least three-fold increased to the controlls. A minimum of three non-toxic dose levels are recquired to evaluate assay data.
Statistics:
Mean and standard deviation were calculated
Key result
Species / strain:
S. typhimurium TA 1535, TA 1537, TA 98 and TA 100
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity, but tested up to precipitating concentrations
Vehicle controls validity:
other: Unacceptable vehicle control values for the tester strain TA1537 and TA 98 were repeated.
Untreated negative controls validity:
not specified
Positive controls validity:
valid
Key result
Species / strain:
S. typhimurium TA 1538
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity, but tested up to precipitating concentrations
Vehicle controls validity:
valid
Untreated negative controls validity:
not specified
Positive controls validity:
valid
Key result
Species / strain:
E. coli WP2 uvr A
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity, but tested up to precipitating concentrations
Vehicle controls validity:
valid
Positive controls validity:
valid
Additional information on results:
TEST-SPECIFIC CONFOUNDING FACTORS

- Precipitation: >100 µg/plate

RANGE-FINDING/SCREENING STUDIES: Yes

COMPARISON WITH HISTORICAL CONTROL DATA: Yes

Remarks on result:
other: all strains/cell types tested

Table 1: Test results of experiment 1:

With or without S9-Mix

Test substance concentration

(μg/plate)

Mean number of revertant colonies per plate

(average of 3 plates)

Base-pair substitution type

Frameshift type

TA 1535

TA1537

TA98

TA100

 

TA 1538

WP2uvrA

-

Vehicle

12

4

17

111

5

21

 -

10

3

4

15

115

6

16

 -

33

5

5

19

113

6

11

-

100

9

4

19

98

7

12

-

333

7

5

11

116

4

10

-

1000

8

6

21

120

7

13

Positive

controls

- S9

Name

SA

9AA

2NF

SA

2NF

MMS

Concentrations

(μg/plate)

1.0

75

1.0

1.0

1.0

1000

Number of colonies/plate

241

40

105

377

179

143

+

Vehicle

14

5

18

133

7

11

 +

10

9

5

27

114

12

16

+

33

9

3

21

113

8

13

+

100

8

7

26

108

9

13

+

333

9

4

27

115

6

8

+

1000

10

5

17

111

9

13

Positive

controls

+ S9

Name

2AA

2AA

2AA

2AA

2AA

2AA

Concentrations

(μg/plate)

1.0

1.0

1.0

1.0

1.0

10

Number of colonies/plate

72

127

888

904

783

57

SA: sodium azide

9AA : 9-aminoacridine

MMS: methylmethanesulfonate

2-AA: 2-aminoanthracene

2NF: 2-nitrofluorene

 

 

Table 2: Test results of experiment 2/3:

With or without S9-Mix

Test substance concentration

(μg/plate)

Mean number of revertant colonies per plate

(average of 3 plates)

Base-pair substitution type

Frameshift type

TA 1535

TA1537

TA98

TA100

 

TA 1538

WP2uvrA

-

Vehicle

14

10

23

126

11

27

 -

10

7

13

16

117

7

27

 -

33

9

15

23

124

8

19

-

100

5

13

22

120

6

18

-

333

12

9

17

110

11

16

-

1000

8

14

17

125

5

21

Positive

controls

- S9

Name

SA

9AA

2NF

SA

2NF

MMS

Concentrations

(μg/plate)

1.0

75

1.0

1.0

1.0

1000

Number of colonies/plate

429

757

125

601

221

195

+

Vehicle

8

5

19

147

14

24

 +

10

9

7

17

142

16

30

+

33

10

5

19

136

18

25

+

100

10

5

20

132

13

31

+

333

10

4

17

138

12

19

+

1000

10

7

19

125

12

19

Positive

controls

+ S9

Name

2AA

2AA

2AA

2AA

2AA

2AA

Concentrations

(μg/plate)

1.0

1.0

1.0

1.0

1.0

10

Number of colonies/plate

85

97

530

647

1041

88

SA: sodium azide

9AA : 9 -aminoacridine

MMS: methylmethanesulfonate

2-AA: 2 -aminoanthracene

2NF: 2 -nitrofluorene

 

 

Conclusions:
Interpretation of results:
negative
Endpoint:
in vitro gene mutation study in mammalian cells
Type of information:
experimental study
Adequacy of study:
key study
Study period:
26 Mar - 11 May 2010
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
other: see 'Remark'
Remarks:
GLP - Guideline study. According to the ECHA guidance document "Practical guide 6: How to report read-across and categories (March 2010)", the reliability was changed from RL1 to RL2 to reflect the fact that this study was conducted on a read-across substance.
Qualifier:
according to guideline
Guideline:
OECD Guideline 476 (In Vitro Mammalian Cell Gene Mutation Test)
Deviations:
no
Qualifier:
according to guideline
Guideline:
EU Method B.17 (Mutagenicity - In Vitro Mammalian Cell Gene Mutation Test)
Deviations:
no
GLP compliance:
yes
Type of assay:
mammalian cell gene mutation assay
Target gene:
thymidine kinase locus
Species / strain / cell type:
mouse lymphoma L5178Y cells
Details on mammalian cell type (if applicable):
- Type and identity of media: RPMI 1640 supplemented with 5% (v/v) heat-inactivated horse serum
- Properly maintained: yes
- Periodically checked for Mycoplasma contamination: yes
- Periodically "cleansed" against high spontaneous background: yes
Metabolic activation:
with and without
Metabolic activation system:
co-factor supplemented post-mitochondrial fraction (S9 mix), prepared from the livers of rats treated with a combination of phenobarbital and ß-naphthoflavone
Test concentrations with justification for top dose:
First experiment: 0.03, 0.1, 0.3, 1, 3, 10, 33, 100 µg/mL (with and without metabolic activation (8%, v/v))
Second experiment: 0.03, 0.1, 0.3, 1, 3, 10, 33, 100 µg/mL (with metabolic activation (12%, v/v)); 0.1, 1, 3, 10, 33, 100, 200, 250 µg/mL (without metabolic activation)
Vehicle / solvent:
- Vehicle(s)/solvent(s) used: DMSO
Untreated negative controls:
no
Negative solvent / vehicle controls:
yes
True negative controls:
no
Positive controls:
yes
Positive control substance:
methylmethanesulfonate
Remarks:
in the absence of S9-mix Migrated to IUCLID6: 15 and 5 µg/mL for 3 and 24 h treatment period
Untreated negative controls:
no
Negative solvent / vehicle controls:
yes
True negative controls:
no
Positive controls:
yes
Positive control substance:
cyclophosphamide
Remarks:
in the presence of S9-mix Migrated to IUCLID6: 7.5 µg/mL
Details on test system and experimental conditions:
METHOD OF APPLICATION: in suspension

DURATION
- Exposure duration: cells were exposed to the test material for 3 h and 24 h
- Expression time (cells in growth medium): Cells in the final suspension after treatment were counted with the coulter particle counter. For the expression of the mutant phenotype, the cells were separated by 2 centrifugation steps and cultures for 48 h after the treatment period. Cells were plated for the determination of the cloning efficiency and mutation frequency. For the determination of the mutation frequency cells were plated and incubated for 11-12 d. After that, cells were stained for 2 h by adding 0.5 mg/mL MTT (Sigma) to each well. The plates were scored for cloning efficiency and mutation frequency with the naked eye or with the microscope.

SELECTION AGENT (mutation assays): RPMI 1640 supplemented with 20% (v/v) heat-inactivated horse serum and 5 µg/mL trifluorothymidine (TFT).

DETERMINATION OF CYTOTOXICITY
- Method: cloning efficiency and relative total growth
Evaluation criteria:
Measurement of cytotoxicity by determining the relative cloning efficiency (survival) or relative total growth of the cultures is usually initiated after the treatment period.
There are several criteria for determining a positive result, such as a concentration-related, or a reproducible increase in mutant frequency.
Statistics:
The cloning efficiency (CE) was determined as follows:
P(0)= Number of empty wells divided by the total number of wells
CE= P(0)/number of cells plated per well

Relative survival rate (RS): RS= [CE(test)/CE(control)] x 100
Relative total growth (RTG): RTG= RSG x RSday2 / 100
Suspension growth (SG): [Day 0 cell count/1.25x10E005] x [Day 1 cell count/1.25x10E005] x [Day 2 cell count]
Relative suspension growth (RSG): SG(test)/SG(control) x 100

RSday2= CEday2(test) / CEday2(control) x 100

The growth rate (GR) was calculated for the solvent control cultures:
- 3 h treatment: [Day 1 cell count/1.25x105] x [Day 2 cell count/1.25x10E005]
- 24 h treatment: [Day 0 cell count/1.25x105] x [Day 1 cell count/1.25x10E005] x [Day 2 cell count/1.25x10E005]


The mutation frequency was expressed as the number of mutants per 106 viable cells. The plating efficiencies of both mutant and viable cells (CE day2) in the same culture were determined and the mutation frequency (MF) was calculated as follows:

MF= {-ln P(0)/number of cells plated per well)/CE day2 x 10E-006

Small and large colony mutation frequencies were calculated in an identical manner.
Key result
Species / strain:
mouse lymphoma L5178Y cells
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity, but tested up to precipitating concentrations
Remarks:
and above (precipitating concentration: 100 µg/mL, tested up to 250 µg/mL)
Vehicle controls validity:
valid
Untreated negative controls validity:
not examined
Positive controls validity:
valid
Additional information on results:
TEST-SPECIFIC CONFOUNDING FACTORS
- Precipitation: at and above 100 µg/mL


RANGE-FINDING/SCREENING STUDIES: Yes, cytotoxicity data was obtained by treating cells for 3 h and 24 h, respectively, with a number of increasing test substance concentrations. The highest concentration tested was 200 µg/ml due to poor solubility of the test substance. No toxicity was observed with and without metabolic activation up to and at the maximum dose level tested with 3 h incubation. 24 h incubation resulted in 64% relative suspension growth in the absence of metabolic activation.

COMPARISON WITH HISTORICAL CONTROL DATA: Yes, all controls were in the range of the historical controls.
Remarks on result:
other: all strains/cell types tested

Table 1: Experiment 1 - 3 hours with and without S9 mix

Dose

(µg/ml)

RSG

(%)

CE day2

(%)

RS day2

(%)

RTG

(%)

mutation frequency x 10-6

 

 

 

 

 

total

Without metabolic activation, 3 h treatment

SC1

100

94

100

100

89

SC2

108

73

0.03

98

101

100

98

63

0.1

92

99

98

90

83

0.3

111

102

101

112

58

1

107

98

97

104

64

3

110

101

100

110

83

10

98

99

98

96

83

33

98

110

109

106

90

100*

74

94

93

69

97

MMS

70

63

63

44

1022

With 8% (v/v) metabolic activation, 3 h treatment

SC1

100

77

100

100

82

SC2

84

87

0.03

96

90

112

107

71

0.1

92

104

129

119

60

0.3

80

108

135

108

55

1

93

105

131

121

69

3

97

90

112

109

65

10

95

84

104

99

71

33

93

81

101

94

91

100*

42

83

103

43

98

CP

20

37

47

9

1107

 

Table 2: Experiment 2 - 3 hours with and 24 hours without S9 mix

Dose

(µg/ml)

RSG

(%)

CE day2

(%)

RS day2

(%)

RTG

(%)

mutation frequency x 10-6

 

 

 

 

 

total

Without metabolic activation, 24 h treatment

SC1

100

102

100

100

62

SC2

104

57

0.1

97

83

80

78

87

1

94

105

102

96

68

3

102

90

87

89

65

10

104

115

111

115

54

33

105

83

80

84

53

100*

102

98

95

97

55

200*

116

104

101

116

52

250*

112

108

105

118

51

MMS

80

81

79

63

631

With 12% (v/v) metabolic activation, 3 h treatment

SC1

100

77

100

100

60

SC2

91

84

0.03

116

58

69

81

108

0.1

97

80

95

93

86

0.3

94

80

95

90

76

1

99

81

97

96

88

3

102

89

106

108

71

10

104

86

103

106

73

33

119

86

103

122

83

100*

105

77

91

96

72

CP

31

54

64

20

814

 

RSG: Relative Suspension Growth; CE: Cloning efficiency; RS: Relative Survival; RTG: Relative Total Growth; SC: Solvent Control (DMSO); MMS: Methylmethansulfonate; CP: Cyclophosphamide

*: Precipitation of test substance

Conclusions:
Interpretation of results:
negative
Endpoint:
in vitro cytogenicity / chromosome aberration study in mammalian cells
Type of information:
experimental study
Adequacy of study:
key study
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
other: Comparable to guideline study with acceptable restrictions (shorter exposure period. Lack of data on test substance, no positive controls for 40 h time point)
Qualifier:
equivalent or similar to guideline
Guideline:
OECD Guideline 473 (In Vitro Mammalian Chromosome Aberration Test)
Version / remarks:
adopted in 1997
Deviations:
yes
Remarks:
(in both experiments, cultures without metabolic activation were exposed to the test substance for about 16 h, no positive control for the 40 h time point)
GLP compliance:
yes
Type of assay:
in vitro mammalian chromosome aberration test
Target gene:
Not applicable.
Species / strain / cell type:
Chinese hamster Ovary (CHO)
Details on mammalian cell type (if applicable):
- Type and identity of media: McCoy's 5A Medium containing 10% (v/v) fetal bovine serum and 2 mM L-glutamine
- Properly maintained: yes
- Periodically checked for Mycoplasma contamination: yes
Additional strain / cell type characteristics:
other: WBL clone
Metabolic activation:
with and without
Metabolic activation system:
Cofactor supplemented post-mitochondrial fraction (S9 mix), prepared from the livers of Sprague-Dawley rats treated with Aroclor 1254.
Test concentrations with justification for top dose:
40, 80 and 160 µg/mL with and without metabolic activation
Vehicle / solvent:
- Vehicle(s)/solvent(s) used: acetone
- Justification for choice of solvent/vehicle: Based on results of a solubility test, acetone was selected as the vehicle. The test substance was not soluble in water or dimethyl sulfoxide at any of the concentrations (10, 25, 50% (v/v)) tested. The test substance was soluble as a 50% mixture in acetone.
Untreated negative controls:
no
Negative solvent / vehicle controls:
yes
True negative controls:
no
Positive controls:
yes
Positive control substance:
other: - S9: N-Methyl-N-Nitro-N-Nitrosoguanidine (MNNG), 0.6 µg/mL (v/v) in acetone; + S9: 7,12-Dimethylbenz[a]anthracene (DMBA), 10 µg/mL (v/v) in acetone
Details on test system and experimental conditions:
METHOD OF APPLICATION: in medium

DURATION
- Exposure duration:
+S9: ca. 3 h (± 0.5 h)
- S9: ca. 16 h (± 0.5 h)
- Fixation time (start of exposure up to fixation or harvest of cells): ca. 16 h (± 0.5 h); second experiment - ca. 16 and 40 h (± 0.5 h)

SPINDLE INHIBITOR (cytogenetic assays): 0.2 mL Colcemid® (10 mg/mL (v/v) in cell culture medium)
STAIN (for cytogenetic assays): 5% Giemsa

NUMBER OF REPLICATIONS: 2 replications (16 h) and 1 replication (40 h), respectively

NUMBER OF CELLS EVALUATED: 100 per culture

DETERMINATION OF CYTOTOXICITY
- Method: mitotic index of 1000 cells
Evaluation criteria:
A test substance was considered positive in the chromosome aberration test if:
1. A statistically significant dose-related increase in the percentage of aberrant cells and in at least one of the treatment groups, the percentage of aberrant cells exceeds 5%. OR
2. A reproducible and statistically significant response for at least one of the treatment groups is observed. In addition, the mean percentage of aberrant cells exceeds 5%.
A positive result indicates that under the test conditions the test substance induces chromosomal aberrations in cultured mammalian somatic cells.
If neither of the above conditions exist, the test substance is considered nonmutagenic or negative for inducing chromosomal aberrations in this system.
Key result
Species / strain:
Chinese hamster Ovary (CHO)
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity, but tested up to precipitating concentrations
Vehicle controls validity:
valid
Untreated negative controls validity:
not examined
Positive controls validity:
valid
Additional information on results:
TEST-SPECIFIC CONFOUNDING FACTORS
- Water solubility: The test substance is not soluble in water, therefore it was dissolved in acetone.
- Precipitation: Final concentrations of the test substance in medium of 10, 20, 39, 78, 156, 313, 625, 1250 and 2500 µg/mL were tested by visual and microscopic methods for precipitation immediately, 30 minutes and 3 h after dosing. Traces of the test substance were observed microscopically at all test concentrations equal to or greater than 78 µg/mL. Therefore, the upper limit of the culture medium solubility of the test substance was considered to be between 39 and 78 µg/mL. Based on these results, the study director selected the following concentrations for the toxicity pretest: 0.625, 1.25, 2.5, 5, 10, 20, 40, 80 and 160 µg/mL.
In the main experiments, slight precipitation was observed in the second experiment after 16 h at 160 µg/mL without metabolic activation. Precipitation was not noted at any other harvest of a 160 µg/mL culture.

RANGE-FINDING/SCREENING STUDIES: To determine a concentration selection for the aberration assay, a toxicity pretest was conducted with concentrations of 0.625, 1.25, 2.5, 5, 10, 20, 40, 80 and 160 µg/mL of the test substance with and without metabolic activation. The concentrations tested were based on the results of a culture medium solubility test. The cultures with metabolic activation were treated for 3 h (± 0.5 h). The cultures without metabolic activation were treated until 2-3 h prior to harvest. All cultures were harvested about 16 h from the beginning of treatment. After harvest, the number of cells that survived treatment were counted using a hemacytometer to evaluate cytotoxicity and the mitotic indices (number of mitotic cells per 1000 total cells) were determined to evaluate cell cycle suppression. The selected concentrations for the aberration assay were based on the results of the cell count data and mitotic index data. The highest reduction in cell survival was observed at 160 µg/mL without metabolic acvtivation, where reduction in viability of 37% was noted. Other less notable reductions in cell survival were noted (see table 3), but were not indicative of a concentration-related trend. Based on these results, the concentrations selected for the aberration assay were 40, 80 and 160 µg/mL.
Remarks on result:
other: all strains/cell types tested

Table 1. Test results of experiment 1

Test item

Concentration

Mitotic Index

Aberrant cells

Aberration frequency

 

 in µg/mL

in %

in %

in %

Exposure period 16 h, fixation time 16 h, without S9 mix

vehicle

0.5% (v/v)

6.8

0.5

0.5

MNNG

0.6

6.2

22.5**

24.5

Test substance

40

5.6

0.5

0.5

80

6.5

0.5

0.5

160

7.2

1.0

1.0

Exposure period 3 h, fixation time 16 h, with S9 mix

Acetone

0.5% (v/v)

5.5

1.0

1.0

DMBA

10

2.6

33.5**

42.0

Test substance

40

5.3

1.5

1.5

80

6.3

0.5

0.5

160

4.6

2.0

2.0

 

**statistically significantly higher than vehicle control (p<0.001)

MNNG: N-Methyl-N-Nitro-N-Nitrosoguanidine; DMBA: 7,12-Dimethylbenz[a]anthracene (positive controls)

 

Table 2. Test results of experiment 2

Test item

Concentration

Mitotic Index

Aberrant cells

Aberration frequency

 

 in µg/mL

in %

in %

in %

Exposure period 16 h, fixation time 16 h, without S9 mix

vehicle

0.5% (v/v)

7.2

1.0

1.0

MNNG

0.6

5.4

17.5**

17.5

Test substance

40

7.1

1.0

1.0

80

5.4

0.5

0.5

160

7.1

2.5

2.5

Exposure period 3 h, fixation time 16 h, with S9 mix

Acetone

0.5% (v/v)

2.2

0.0

0.0

DMBA

10

4.5

33.0**

43.0

Test substance

40

2.2

1.0

1.0

80

2.4

2.0

2.0

160

2.0

1.5

1.5

Exposure period 16 h, fixation time 40 h, without S9 mix

Acetone

0.5% (v/v)

3.4

2.5

2.0

MNNG #

0.6

---

---

---

Test substance

40

3.0

4.0

4.5

80

2.2

3.0

3.0

160

3.4

2.0

2.0

Exposure period 3 h, fixation time 40 h, with S9 mix

Acetone

0.5% (v/v)

4.8

2.5

2.5

DMBA #

10

---

---

---

Test substance

40

5.4

2.0

2.0

80

4.8

2.0

2.0

160

5.0

0.5

0.5

 

**statistically significantly higher than vehicle control (p<0.001)

MNNG: N-Methyl-N-Nitro-N-Nitrosoguanidine; DMBA: 7,12-Dimethylbenz[a]anthracene (positive controls)

# According to the study report, positive controls were not required for the 40 h harvest.

Table 3. Toxicity pretest results

Treatment Group
in µg/mL

Cell Survival in %*

+ S9

- S9

non-treated

107

102

vehicle

100

100

0.625

122

114

1.25

95

72

2.5

121

88

5

108

68

10

111

108

20

89

102

40

99

93

80

78

93

160

120

63

  * % cell survival as compared to vehicle

Conclusions:
Interpretation of results:
negative
Endpoint:
in vitro gene mutation study in bacteria
Type of information:
experimental study
Adequacy of study:
key study
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
other: Comparable to guideline study with acceptable restrictions (no details on analytical purity given)
Qualifier:
equivalent or similar to guideline
Guideline:
OECD Guideline 471 (Bacterial Reverse Mutation Assay)
Deviations:
yes
Remarks:
no analytical purity reported
GLP compliance:
yes
Type of assay:
bacterial reverse mutation assay
Target gene:
his operon (S. typhimurium) and trp operon (E. coli)
Species / strain / cell type:
S. typhimurium TA 1535, TA 1537, TA 98 and TA 100
Species / strain / cell type:
E. coli WP2 uvr A
Metabolic activation:
with and without
Metabolic activation system:
cofactor supplemented post-mitochondrial fraction (S9 mix), prepared from the livers of male Sprague Dawley rats treated i.p. with a single dose of 500 mg/kg bw Arochlor 1254
Test concentrations with justification for top dose:
Range-finding toxicity study (in TA 100 and WP2 uvrA): 6.67, 10.0, 33.3, 66.7, 100, 333, 667, 1000, 3330 and 5000 µg/plate, with and without metabolic activation
Main study (all strains): 33.3, 100, 333, 1000, 3330 and 5000 µg/plate, with and without metabolic activation
Vehicle / solvent:
- Vehicle(s)/solvent(s) used: ethanol
Untreated negative controls:
no
Negative solvent / vehicle controls:
yes
True negative controls:
no
Positive controls:
yes
Remarks:
-S9: 2-NF (1 µg/plate, TA 98); SA (2 µg/plate, TA 100 and TA 1535); ICR-191 (2 µg/plate, TA 1537); 4-NQO (1 µg/plate, WP2 uvrA); +S9: BP (2.5 µg/plate, TA 98); 2-AA (2.5-25 µg/plate, TA 100, TA 1535, TA 1537 and WP2 uvrA)
Positive control substance:
4-nitroquinoline-N-oxide
2-nitrofluorene
sodium azide
benzo(a)pyrene
other: 2-aminoanthracene; ICR-191
Remarks:
2-NF: 2-nitrofluorene; SA: sodium azide; 4-NQO: 4-nitroquinoline-N-oxide; BP: benzo(a)pyrene; 2-AA: 2-aminoanthracene
Details on test system and experimental conditions:
METHOD OF APPLICATION: in agar (plate incorporation)

DURATION
- Exposure duration: 52 ± 4 h

NUMBER OF REPLICATIONS: triplicates each in one experiment

DETERMINATION OF CYTOTOXICITY
- Method: inspection of bacterial background lawn
Evaluation criteria:
The results of the test were considered positive, if the following criteria were met:
- tester strains TA 98, TA 100 and WP2 uvrA: for a test article to be considered positive, it must produce at least a 2-fold increase in the mean revertants per plate of at least one of these tester strains over the mean revertants per plate of the appropriate vehicle control. This increase in the mean number of revertants per plate must be accompanied by a dose response to increasing concentrations of the test article.
- tester strains TA 1535 and TA 1537: for a test article to be considered positive, it must produce at least a 3-fold increase in the mean revertants per plate of at least one of these tester strains over the mean revertants per plate of the appropriate vehicle control. This increase in the mean number of revertants per plate must be accompanied by a dose response to increasing concentrations of the test article.
Statistics:
Mean values and standard deviations of revertants per plate were calculated.
Key result
Species / strain:
S. typhimurium TA 1535, TA 1537, TA 98 and TA 100
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity, but tested up to precipitating concentrations
Vehicle controls validity:
valid
Untreated negative controls validity:
not examined
Positive controls validity:
valid
Additional information on results:
TEST-SPECIFIC CONFOUNDING FACTORS
- Precipitation: in the absence of S9 mix, slight precipitation of the test substance was observed in all experiments at concentrations ≥ 100 µg/plate. In the absence of S9 mix, slight precipitates were noted at ≥ 333 µg/plate in the preliminary cytotoxicity study and at ≥ 1000 µg/plate in the main study.

RANGE-FINDING/SCREENING STUDIES: in a preliminary cytotoxicity study, the tester strains TA 100 and WP2 uvrA were treated with the test substance at concentrations ranging from 6.67 to 5000 µg/plate in the presence and absence of metabolic activation (S9 mix). No cytotoxicity was observed in these strains up to the limit dose of 5000 µg/plate, neither with nor without addition of S9 mix.
Remarks on result:
other: all strains/cell types tested

Table 1. Test results of experiment (plate incorporation)

Bacterial Reverse Mutation Assay, mean revertant colonies/plate (mutation factor) (n=3 ± SD)

EXPERIMENT

S9-Mix

Without

 

Concentration (per plate)

TA 98

TA 100

TA 1535

TA 1537

WP2 uvrA

SC

25 ± 2

80 ± 9

14 ± 8

3 ± 1

26 ± 3

Test material

 

33.3 µg

19 ± 4

88 ± 5

12 ± 5

4 ± 4

19 ± 2

100 µg

21 ± 7

96 ± 12

11 ± 2

5 ± 4

19 ± 4

333 µg

22 ± 2

92 ± 9

13 ± 2

5 ± 5

23 ± 10

1000 µg

25 ± 6

97 ± 11

25 ± 2

5 ± 3

30 ± 3

3330 µg

22 ± 1

101 ± 3

10 ± 1

3 ± 2

32 ± 2

5000 µg

20 ± 6

85 ± 6

15 ± 3

4 ± 2

27 ± 3

PC

 

2-NF

206 ± 42

-

-

-

-

SA

-

549 ± 71

480 ± 3

-

-

ICR-191

-

-

-

277 ± 33

-

4-NQO

 -

 -

 -

260 ± 43

S9-Mix

 

With

Concentration (per plate)

TA 98

TA 100

TA 1535

TA 1537

WP2 uvrA

SC

36 ± 2

102 ± 2

19 ± 1

7 ± 1

25 ± 5

Test material

 

33.3 µg

36 ± 7

93 ± 9

15 ± 2

8 ± 4

22 ± 5

100 µg

34 ± 7

97 ± 17

16 ± 4

9 ± 2

22 ± 6

333 µg

34 ± 6

87 ± 6

17 ± 2

9 ± 4

27 ± 3

1000 µg

39 ± 9

94 ± 17

17 ± 3

8 ± 2

26 ± 6

3330 µg

38 ± 8

92 ± 6

16 ± 4

6 ± 3

29 ± 11

5000 µg

34 ± 5

139 ± 5

20 ± 3

3 ± 2

24 ± 4

PC

 

 

 

 

 

BP

471 ± 14

-

-

-

-

2-AA

-

918 ± 296

124 ± 6

171 ± 32

278 ± 24

SC = Solvent control; PC = Positive control substances; SD = standard deviation;

2-NF: 2-nitrofluorene; SA: sodium azide; 4-NQO: 4-nitroquinoline-N-oxide; BP: benzo(a)pyrene; 2-AA: 2-aminoanthracene

Conclusions:
Interpretation of results:
negative
Endpoint conclusion
Endpoint conclusion:
no adverse effect observed (negative)

Genetic toxicity in vivo

Link to relevant study records
Reference
Endpoint:
in vivo mammalian somatic cell study: cytogenicity / erythrocyte micronucleus
Remarks:
Type of genotoxicity: chromosome aberration
Type of information:
experimental study
Adequacy of study:
key study
Study period:
13 May - 08 July 1992
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
other: see 'Remark'
Remarks:
GLP - Guideline study. According to the ECHA guidance document "Practical guide 6: How to report read-across and categories (March 2010)", the reliability was changed from RL1 to RL2 to reflect the fact that this study was conducted on a read-across substance.
Qualifier:
according to guideline
Guideline:
OECD Guideline 474 (Mammalian Erythrocyte Micronucleus Test)
Version / remarks:
adopted in 1983
Deviations:
no
GLP compliance:
yes
Type of assay:
micronucleus assay
Species:
mouse
Strain:
CD-1
Sex:
male/female
Details on test animals or test system and environmental conditions:
TEST ANIMALS
- Source: Charles River Breeding Laboratories (UK Limited), Margate, Kent, UK
- Age at study initiation: 5-9 weeks for phase I (determination of the maximum tolerated dose) and 7-9 weeks for phase II (Micronucleus test) of the study
- Assigned to test groups randomly: Yes
- Housing: 5 per cage in mobile mouse cage racks, housed per sex
- Diet: Porton Combined Diet, ad libitum
- Water: filtered tap water, ad libitum


ENVIRONMENTAL CONDITIONS
- Temperature (°C): 19-23
- Humidity (%): 40-70
- Air changes (per hr): 25
- Photoperiod (hrs dark / hrs light): 12 / 12
Route of administration:
intraperitoneal
Vehicle:
- Vehicle(s)/solvent(s) used: corn oil
- Amount of vehicle (if gavage or dermal): 10 mL/kg
Details on exposure:
The study consisted in two phases: in phase I the maximum tolerated dose (MTD) was determined, on the basis of lethalities or severe toxicity observed over a four-day observation period following a single intraperitoneal injection.
In phase II, male and female animals were weighed and given a single intraperitoneal injection of corn oil (vehicle control), cyclophosphamide (positive control) or test substance prepared in corn oil.

Duration of treatment / exposure:
Single dose
Frequency of treatment:
Single dose
Post exposure period:
24 h and 48 h
Remarks:
Doses / Concentrations:
5000 mg/kg bw
Basis:
nominal conc.
No. of animals per sex per dose:
5
Control animals:
yes, concurrent vehicle
Positive control(s):
cyclophosphamide
- Route of administration: i.p.
- Doses / concentrations: 65 mg/kg bw in physiological saline
Tissues and cell types examined:
Monochromatic and polychromatic erythrocytes
Details of tissue and slide preparation:
CRITERIA FOR DOSE SELECTION:
No deaths or severe adverse effects occurred in Phase I of the study with doses up to 5000 mg/kg bw. This dose was selected as MTD.

TREATMENT AND SAMPLING TIMES: 24 h and 48 h after dosing


DETAILS OF SLIDE PREPARATION: Bone Marrow smears were stained with polychrome methylene blue and eosin


METHOD OF ANALYSIS: 1000 polychromatic erythrocytes were evaluated for micronuclei per slide. In addition, 1000 erythrocytes were counted to determine the percentage of polychromatic erythrocytes in the total erythrocyte population.

Evaluation criteria:
Increase in the incidence of micronucleated polychromatic erythrocytes in any sex or at any time point.
Percentage of polychromatic erythrocytes.
Statistics:
The incidence of micronucleated polychromatic erythrocytes and percentage of polychromatic erythrocytes in the erythrocyte sample were considered by analysis of variance regarding each combination of sampling time, dose level and sex as a separate group. Results were examined to determine wether any differences between vehicle control and test substance treated groups were consistent between sexes and across sampling times.
Each group mean was compared with the vehicle control group mean at the corresponding sampling time using a one-sided Student´s t-test based on the error mean square in the analysis.
Key result
Sex:
male/female
Genotoxicity:
negative
Toxicity:
no effects
Vehicle controls validity:
valid
Negative controls validity:
not examined
Positive controls validity:
valid
Additional information on results:
No statistically or biologically significant increases in the incidence of micronucleated polychromatic erythrocytes over the vehicle control values were seen in either sex at either of the sampling times.
Comparison of the percentage of polychromatic erythrocytes showed no significant differences between the female animals treated with the vehicle control or with the test material. A small, but significant decrease was, however, noted in male mice treated with the test material at 5000 mg/kg bw. This small decrease is, however, considered not to be statistically significant compared to the concurrent control values.
The positive control induced stastistically significant and biologically meaningful increases in micronucleated polychromatic erythrocytes, compared to the vehicle control values, thus demonstrating the sensitivity of the test system to a known clastogen.

Mean incidence of micronucleated polychromatic erythrocytes/1000 polychromatic erythrocytes ± Standard Deviation at two sampling times. n=5

 

Table 1: Males

Group

Compound

Dose

Mean Incidence

24 h

48 h

11

Vehicle control

(corn oil)

10 mL/kg

0.8 ± 0.8

1.0 ± 1.2

12

Cyclophosphamide

65 mg/kg

24.4 ± 6.0**

 

13

Test substance

5000 mg/kg

0.6 ± 0.6

0.4 ± 0.6

 

Table 2: Females

Group

Compound

Dose

Mean Incidence

24 h

48 h

11

Vehicle control

(corn oil)

10 ml/kg

0.2 ± 0.5

1.4 ± 1.1

12

Cyclophosphamide

65 mg/kg

18.4 ± 7.3**

 

13

 Test substance

5000 mg/kg

0.4 ± 0.9

0.4 ± 0.9

 

 

Mean percentage of polychromatic erythrocytes ± Standard Deviation at two sampling times. n=5

 

Table 3: Males

Group

Compound

Dose

Mean Incidence

24 h

48 h

11

Vehicle control

(corn oil)

10 ml/kg

48.0 ± 5.6

44.3 ± 7.5

12

Cyclophosphamide

65 mg/kg

41.4 ± 4.4*

 

13

 Test substance

5000 mg/kg

42.2 ± 7.0*

43.3 ± 1.9

 

Table 4: Female

Group

Compound

Dose

Mean Incidence

24 h

48 h

11

Vehicle control

(corn oil)

10 ml/kg

41.9 ± 4.8

41.9 ± 1.7

12

Cyclophosphamide

65 mg/kg

45.9 ± 3.49

 

13

 Test substance

5000 mg/kg

46.5 ± 5.8

48.0 ± 5.2

Conclusions:
Interpretation of results: Negative
Endpoint conclusion
Endpoint conclusion:
no adverse effect observed (negative)

Additional information

Justification for grouping of substances and read-across

The polyol esters category comprises of 51 aliphatic esters of polyfunctional alcohols containing two to six reactive hydroxyl groups and one to six fatty acid chains. The category contains mono constituent, multi-constituent and UVCB substances with fatty acid carbon chain lengths ranging from C5 - C28, which are mainly saturated but also mono unsaturated C16 and C18, polyunsaturated C18, branched C5 and C9,branched C14 – C22 building mono-, di-, tri-, and tetra esters with an alcohol (i.e.polyol).

The available data allows for an accurate hazard and risk assessment of the category and the category concept is applied for the assessment of environmental fate and environmental and human health hazards. Thus, where applicable, environmental and human health effects are predicted from adequate and reliable data for source substance(s) within the group by interpolation to the target substances in the group (read-across approach) applying the group concept in accordance with Annex XI, Item 1.5, of Regulation (EC) No 1907/2006. In particular, for each specific endpoint the source substance(s) structurally closest to the target substance is/are chosen for read-across, with due regard to the requirements of adequacy and reliability of the available data. Structural similarities and similarities in properties and/or activities of the source and target substance are the basis of read-across.

A detailed justification for the grouping of chemicals and read-across is provided in the technical dossier (see IUCLID Sections 7.1 and 13) and within Chapter 5.1 of the CSR.

 

Data matrix for genetic toxicity

CAS

Bacterial gene mutation

cytogenicity in mammalian cells in vitro

Mammalian gene mutation

Genotoxicity in vivo

NPG esters

 

68855-18-5 (a)

RA: CAS 31335-74-7

negative

negative

--

G31335-74-7

negative

RA: CAS 68855-18-5

RA: CAS 68855-18-5

RA: CAS 42222-50-4

--

70693-32-2

RA: CAS 97281-24-8

RA: CAS 85186-86-3

RA: CAS 403507-18-6

RA: CAS 68855-18-5

RA: CAS 42222-50-4

--

former CAS 85186-86-3

RA: CAS 85186-86-3

RA: CAS 85186-86-3

RA: CAS 68855-18-5

RA: CAS 42222-50-4

--

85186-86-3

negative

negative

RA: CAS 68855-18-5

RA: CAS 42222-50-4

--

85186-95-4

RA: CAS 85186-86-3

RA: CAS 85186-86-3

RA: CAS 68855-18-5

RA: CAS 42222-50-4

--

85116-81-0

RA: CAS 85186-86-3

RA: CAS 68855-18-5

RA: CAS 85186-86-3

RA: CAS 68855-18-5

RA: CAS 42222-50-4

--

91031-27-5

RA: CAS 85186-86-3

RA: CAS 68855-18-5

RA: CAS 85186-86-3

RA: CAS 68855-18-5

RA: CAS 42222-50-4

--

42222-50-4

RA: CAS 403507-18-6

RA: CAS 85186-86-3

RA: CAS 403507-18-6

RA: CAS 85186-86-3

negative

--

85005-25-0

RA: CAS 85186-86-3

RA: CAS 85186-86-3

RA: CAS 68855-18-5

RA: CAS 42222-50-4

--

TMP esters

 

78-16-0 (a)

negative

RA: CAS 189120-64-7

RA: CAS 11138-60-6

RA: CAS 85186-89-6

--

91050-88-3

RA: CAS 85186-89-6

RA: CAS 403507-18-6

RA: CAS 11138-60-6

RA: CAS 85186-89-6

RA: CAS 68424-31-7

97281-24-8(b)

negative

--

--

--

189120-64-7

--

negative

--

--

11138-60-6

negative

negative

RA: CAS 85186-89-6

RA: CAS 68424-31-7

91050-89-4

negative

RA: CAS 11138-60-6

RA: CAS 85186-89-6

--

85566-29-6

RA: CAS 11138-60-6

RA: CAS 403507-18-6

RA: CAS 11138-60-6

RA: CAS 85186-89-6

RA: CAS 68424-31-7

85186-89-6

negative

RA: CAS 403507-18-6

RA: CAS 11138-60-6

negative

RA: CAS 68424-31-7

403507-18-6

negative

negative

--

--

68002-79-9

RA: CAS 11138-60-6

RA: CAS 85005-23-8

RA: CAS 403507-18-6

RA: CAS 85186-89-6

RA: CAS 68424-31-7

 (Formerly 85005-23-8)

EC 931-531-4

negative

RA: CAS 403507-18-6

RA: CAS 11138-60-6

RA: CAS 85186-89-6

RA: CAS 68424-31-7

68002-78-8

RA: CAS 403507-18-6

RA: CAS 85186-89-6

RA: CAS 403507-18-6

RA: CAS 85186-89-6

--

 (Formerly 57675-44-2)

EC 931-461-4

RA: CAS 85005-23-8

RA: CAS 403507-18-6

RA: CAS 85186-89-6

RA: CAS 68424-31-7

85186-92-1

RA: CAS 85005-23-8

RA: CAS 403507-18-6

RA: CAS 11138-60-6

RA: CAS 85186-89-6

RA: CAS 42222-50-4

RA: CAS 68424-31-7

68541-50-4

RA: CAS 403507-18-6

RA: CAS 85186-89-6

RA: CAS 403507-18-6

RA: CAS 85186-89-6

--

PE esters

 

15834-04-5 (b)

RA: CAS 11138-60-6

RA: 67762-53-2

RA: CAS 189200-42-8

negative

RA: CAS 68424-31-7

85116-93-4

negative

RA: CAS 403507-18-6

RA: CAS 85186-89-6

RA: CAS 68424-31-7

85711-45-1 (a)

RA: CAS 85116-93-4
RA: CAS 85186-89-6

RA: CAS 403507-18-6

RA: CAS 85186-89-6

--

25151-96-6

RA: CAS 85116-93-4

RA: CAS 403507-18-6

RA: CAS 85186-89-6

--

67762-53-2


negative

 

RA: CAS 189200-42-8

RA: CAS 15834-04-5

--

(Formerly 68441-94-1)

RA: CAS 68441-68-9

RA: CAS 189200-42-8

RA: CAS 11138-60-6

 

 

RA: CAS 189200-42-8

RA: CAS 15834-04-5

RA: CAS 68424-31-7

(Formerly 68424-30-6)

RA: CAS 68441-68-9

RA: CAS 189200-42-8

RA: CAS 189200-42-8

RA: CAS 15834-04-5

RA: CAS 68424-31-7

68424-31-7 (c)

RA: CAS 11138-60-6

RA: 67762-53-2

RA: CAS 189200-42-8

RA: CAS 15834-04-5

RA: CAS 68424-31-7

68424-31-7 (d)

RA: CAS 11138-60-6

RA: 67762-53-2

RA: CAS 189200-42-8

RA: CAS 15834-04-5

RA: CAS 68424-31-7

68424-31-7 (e)

RA: CAS 11138-60-6

RA: 67762-53-2

RA: CAS 189200-42-8

RA: CAS 15834-04-5

RA: CAS 68424-31-7

71010-76-9

RA: CAS 68441-68-9
RA: CAS 189200-42-8

RA: CAS 189200-42-8

RA: CAS 15834-04-5

--

68441-68-9

negative

RA: CAS 189200-42-8

RA: CAS 15834-04-5

--

85586-24-9

negative

RA: CAS 189200-42-8

RA: CAS 15834-04-5

--

85049-33-8

RA: CAS 189200-42-8

RA: CAS 67762-53-2

RA: CAS 189200-42-8

RA: CAS 403507-18-6

RA: CAS 85186-89-6

RA: CAS 68424-31-7

91050-82-7

RA: CAS 85116-93-4

RA: CAS 403507-18-6

RA: CAS 85186-89-6

--

19321-40-5

RA: CAS 85116-93-4

RA: CAS 403507-18-6

RA: CAS 85186-89-6

--

68604-44-4

RA: CAS 85116-93-4
RA: CAS 85186-89-6

RA: CAS 403507-18-6

RA: CAS 85186-89-6

--

62125-22-8

RA: CAS 85116-93-4

RA: CAS 403507-18-6

RA: CAS 85186-89-6

--

68440-09-5

RA: CAS 85116-93-4
RA: CAS 85186-89-6

RA: CAS 403507-18-6
RA: CAS 189200-42-8

RA: CAS 85186-89-6
RA: CAS 15834-04-5

--

189200-42-8

negative

negative

---

--

 

(a) Category members subject to registration to the REACh Phase-in registration deadline of 31 May 2013 are indicated in bold font. Only for these substances a full set of experimental results and/or read-across is given.

(b) Substances that are either already registered under REACh or not subject to the REACh Phase-in registration deadline of 31 May 2013 are indicated in normal font.

For all category members registered under REACh a full data set for each endpoint is provided. For substances not subject to the current REACh Phase-in registration, lack of data for a given endpoint is indicated by "--".

(c) CAS 68434-31-7 – Lead registrant

(d) Separate registration of CAS 68434-31-7

(e) Separate registration of CAS 68434-31-7 (2-ethylhexanoic acid)

 

 

Discussion

In vitro gene mutation in bacteria

CAS 31335-74-7

The mutagenic potential of 2,2-dimethyl-1,3-propanediyl dioctanoate (CAS 31335-74-7) was tested in two reverse mutation assays performed comparable to OECD Guideline 471 and under GLP conditions (Callender, 1995 & 1996). Salmonella typhimurium strains TA1535, TA1537, TA98, TA100 and E. coli WP2P and WP2 uvrA were used. Within the first experiment, tester strains were incubated with test material concentrations of 100, 200, 500, 1000, 2500 and 5000 µg/plate dissolved in DMSO with and without the addition of a metabolic activation system (phenobarbitale and beta-naphthoflavone induced rat liver S9 mix) in a plate incorporation test. The repeat experiment within both studies was done with an additional 1 hour pre-incubation period. Vehicle and appropriate positive controls were included into the study design. Positive control materials induced statistically significant increases in the frequency of revertant colonies indicating the satisfactory performance of the test and the activity of the metabolizing system. No increase in the frequency of revertant colonies compared to concurrent vehicle controls was observed in all strains treated with the test substance in both experiments, neither in the presence nor in the absence of metabolic activation. No cytotoxicity was observed. Thus, 2,2-dimethyl-1,3-propanediyl dioctanoate did not induce point mutations by base-pair changes or frame-shifts in the genome of the strains tested under the conditions of these tests.

CAS 85186-86-3

The mutagenic potential of Fatty acids, C8-18 and C18-unsatd., esters with neopentylglycol (CAS 85186-86-3) was tested in a reverse mutation assay performed comparable to OECD Guideline 471 and under GLP conditions (Bowles, 2012). Salmonella typhimurium strains TA1535, TA1537, TA98, TA100 and E. coli WP2 uvrA were used. Tester strains were incubated with test material concentrations of 50, 150, 500, 1500, and 5000 µg/plate dissolved in acetone with and without the addition of a metabolic activation system (phenobarbitale and beta-naphthoflavone induced rat liver S9 mix). The first experiment was a plate incorporation assay and the repeat experiment was carried out using an additional 20 min pre-incubation. Vehicle, negative and appropriate positive controls were included into the study design. Positive control materials induced statistically significant increases in the frequency of revertant colonies indicating the satisfactory performance of the test and the activity of the metabolizing system. No increase in the frequency of revertant colonies compared to concurrent controls was observed in all strains treated with the test substance, neither in the presence nor in the absence of metabolic activation. No cytotoxicity was observed in the plate incorporation assay. However, cytotoxicity was seen at 5000 µg/plate without S9 mix in the TA100, TA1535 and TA1537 strains in the pre-incubation assay. Thus, Fatty acids, C8-18 and C18-unsatd., esters with neopentylglycol did not induce point mutations by base-pair changes or frame-shifts in the genome of the strains tested under the conditions of this test.

CAS 78-16-0

There are 4 studies available investigating the mutagenic potential of 2-ethyl-2-[[(1-oxoheptyl)oxy]methyl]propane-1,3-diyl bisheptanoate (CAS 78-16-0) in bacteria.

In the first study, the mutagenic potential of the test substance was investigated in a reverse mutation assay performed comparable to OECD Guideline 471 and under GLP conditions (Wagner, 1997). Salmonella typhimurium strains TA1535, TA1537, TA98, TA100, TA1538 and E. coli WP2 uvrA were used. Tester strains were incubated with the test material dissolved in ethanol at concentrations of 10, 33, 100, 333 and 1000 µg/plate without metabolic activation and at 33, 100, 333, 1000 and 5000 µg/plate with metabolic activation (Arochlor 1254 induced rat liver S9 mix). Vehicle and appropriate positive controls were included into the study design. Positive control materials induced statistically significant increases in the frequency of revertant colonies indicating the satisfactory performance of the test and the activity of the metabolizing system. No increase in the frequency of revertant colonies compared to concurrent vehicle controls was observed in all strains treated with the test substance, neither in the presence nor in the absence of metabolic activation. No cytotoxicity was observed, but the test substance was tested up to precipitating concentrations. Thus, 2-ethyl-2-[[(1-oxoheptyl)oxy]methyl]propane-1,3-diyl bisheptanoate did not induce point mutations by base-pair changes or frame-shifts in the genome of the strains tested under the conditions of this test.

There is a second Ames test available for which only a summary of the results was given (Callander, 1991). Salmonella typhimurium strains TA1535, TA1537, TA98, TA100 and E. coli WP2P and WP2P uvrA were tested. No test concentrations were given, but all strains were tested in a plate incorporation assay with and without metabolic activation. TA98 and TA100 were additionally tested in a preincubation assay. No increases in the frequency of revertant colonies in the strains treated with the test substance were found.

There are two additional studies available. Another Ames test was conducted which only contained 1 plate per incubation and no repeat experiment. Additionally, gene mutation in Saccharomyces cerevisiae D4 was examined. However, again only one plate per concentration was used and the validity of the positive control was doubtful. Due to these methodological deficiencies, both studies were not considered for assessment of mutagenic potential.

In summary, 2-ethyl-2-[[(1-oxoheptyl)oxy]methyl]propane-1,3-diyl bisheptanoate is not considered to have mutagenic potential in bacteria.

CAS 97281-24-8

The mutagenic potential of Fatty acids, C8-10, mixed esters with neopentyl glycol and trimethylolpropane (CAS 97281-24-8) was tested in a reverse mutation assay comparable to OECD Guideline 471 and under GLP conditions (Banduhn, 1988). Salmonella typhimurium strains TA1535, TA1537, TA98, TA100 and TA1538 were used. Tester strains were incubated with test material dissolved in Tween 80/water at concentrations of 8, 40, 200, 1000 and 5000 µg/plate with and without the addition of a metabolic activation system (Aroclor 1254 induced rat liver S9 mix). Vehicle and appropriate positive controls were included into the study design. Positive control materials induced statistically significant increases in the frequency of revertant colonies indicating the satisfactory performance of the test and the activity of the metabolizing system. No increase in the frequency of revertant colonies compared to concurrent vehicle controls was observed in all strains treated with the test substance, neither in the presence nor in the absence of metabolic activation. No cytotoxicity was observed. Thus, Fatty acids, C8-10, mixed esters with neopentyl glycol and trimethylolpropane did not induce point mutations by base-pair changes or frame-shifts in the genome of the strains tested.

CAS 91050-89-4

The mutagenic potential of Fatty acids, C8-10, triesters with trimethylolpropane (CAS 91050-89-4) was tested in a reverse mutation assay comparable to OECD Guideline 471 and under GLP conditions (Banduhn, 1993). Salmonella typhimurium strains TA1535, TA1537, TA98, TA100 and TA1538 were used. Tester strains were incubated with test material dissolved in Tween 80 and water at concentrations of 8, 40, 200, 1000 and 5000 µg/plate with and without the addition of a metabolic activation system (Arochlor 1254 induced rat liver S9 mix). Vehicle, negative and appropriate positive controls were included into the study design. Positive control materials induced statistically significant increases in the frequency of revertant colonies indicating the satisfactory performance of the test and the activity of the metabolizing system. No increase in the frequency of revertant colonies compared to concurrent controls was observed in all strains treated with the test substance, neither in the presence nor in the absence of metabolic activation. No cytotoxicity was observed, but the test substance was tested up to precipitating concentrations. Thus, Fatty acids, C8-10, triesters with trimethylolpropane did not induce point mutations by base-pair changes or frame-shifts in the genome of the strains tested.

CAS 11138-60-6

In an Ames test conducted with the Fatty acids, 8-10 (even numbered), di- and triesters with propylidynetrimethanol (CAS 11138-60-6), Salmonella typhimurium strains TA 1535, TA 1537, TA 1538, TA 98, TA 100 and E.coli WP2 uvr A were treated according to OECD Guideline 471 (Bailey, 1996). The test substance was diluted in ethanol and test substance concentrations of 0, 10, 33, 100, 333 and 1000 µg/plate were tested in triplicate, both with and without the addition of a rat liver homogenate metabolising system (S9). Precipitation of the test substance was observed at and above 100 µg/plate. The test material caused no cytotoxicity up to the highest, precipitating dose. No significant increases in the frequency of revertant colonies were recorded for any of the bacterial strains, with any dose of the test material, either with or without metabolic activation.

 

Formerly 85186-89-6

The mutagenic potential of Fatty acids, C8-18 and C18-unsatd., esters with trimethylolpropane (Formerly CAS 85186-89-6) was examined in a reverse mutation assay comparable to OECD Guideline 471 and under GLP conditions (Wiebel, 1999). Salmonella typhimurium strains TA1535, TA1537, TA98, TA100 and TA1538 were used. Tester strains were incubated with test material dissolved in acetone at concentrations of 8, 40, 200, 1000 and 5000 µg/plate (no toxicity but tested up to precipitating concentrations) with and without the addition of a metabolic activation system (phenobarbitale and beta-naphthoflavone induced rat liver S9 mix). Vehicle, negative and appropriate positive controls were included into the study design. Positive control materials induced statistically significant increases in the frequency of revertant colonies indicating the satisfactory performance of the test and the activity of the metabolizing system. No increase in the frequency of revertant colonies compared to concurrent controls was observed in all strains treated with the test substance, neither in the presence nor in the absence of metabolic activation. No cytotoxicity was observed but the test substance was tested up to limit concentrations. Thus, Fatty acids, C8-18 and C18-unsatd., esters with trimethylolpropane did not induce point mutations by base-pair changes or frame-shifts in the genome of the strains tested.

CAS 403507-18-6

The mutagenic potential of Fatty acids, C16-18 and C18-unsatd., branched and linear ester with trimethylolpropane (CAS 403507-18-6) was tested in a reverse mutation assay comparable to OECD Guideline 471 and under GLP conditions (Bowles, 2002). Salmonella typhimurium strains TA1535, TA1537, TA98, TA100 and TA102 were used. Tester strains were incubated with test material dissolved in acetone at concentrations of 50, 150, 500, 1500 and 5000 µg/plate with and without the addition of a metabolic activation system (phenobarbitale and beta-naphthoflavone induced rat liver S9 mix). Vehicle and appropriate positive controls were included into the study design. Positive control materials induced statistically significant increases in the frequency of revertant colonies indicating the satisfactory performance of the test and the activity of the metabolizing system. No increase in the frequency of revertant colonies compared to concurrent vehicle controls was observed in all strains treated with the test substance, neither in the presence nor in the absence of metabolic activation. No cytotoxicity was observed, but the test substance was tested up to precipitating concentrations. Thus, Fatty acids, C16-18 and C18-unsatd., branched and linear ester with trimethylolpropane did not induce point mutations by base-pair changes or frame-shifts in the genome of the strains tested.

CAS 85005-23-8

In an Ames test, Salmonella typhimurium strains TA 1535, TA 1537, TA 98 and TA 100 as well as E. coli WP2 uvr A were treated with the test substance diluted in Tween 80 according to OECD Guideline 471 (Verspeek-Rip, 1997). Test substance concentrations of 3, 10, 33, 100, 333, 1000, 3330 or 5000 µg/plate were tested in triplicate, both with and without the addition of a rat liver homogenate metabolising system (S9-mix). Precipitation of the test substance was observed at and above 3330 µg/plate. The test material caused no cytotoxicity up to the highest, precipitating dose. No significant increases in the frequency of revertant colonies were recorded for any of the bacterial strains, with any dose of the test material, either with or without metabolic activation. The value of the controls for TA1537, in the presence of S9-mix, was just outside the historical control range but not considered to affect the validity of the study.

CAS 85116-93-4

The mutagenic potential of Fatty acids, C16-18 (even numbered), esters with pentaerythritol (CAS 85116-93-4) was tested in a reverse mutation assay comparable to OECD Guideline 471 and under GLP conditions (Banduhn, 1991). Salmonella typhimurium strains TA1535, TA1537, TA98, TA100 and TA1538 were used. Tester strains were incubated with test material dissolved in Tween 80 at concentrations of 8, 40, 200, 1000 and 5000 µg/plate (no toxicity but tested up to precipitating concentrations) with and without the addition of a metabolic activation system (Aroclor 1254 induced rat liver S9 mix). Vehicle, negative and appropriate positive controls were included into the study design. Positive control materials induced statistically significant increases in the frequency of revertant colonies indicating the satisfactory performance of the test and the activity of the metabolizing system. No increase in the frequency of revertant colonies compared to concurrent controls was observed in all strains treated with the test substance, neither in the presence nor in the absence of metabolic activation. Thus, Fatty acids, C16-18, esters with pentaerythritol did not induce point mutations by base-pair changes or frame-shifts in the genome of the strains tested.

CAS 67762-53-2

The mutagenic potential of Fatty acids, C5-9, tetraesters with pentaerythritol (CAS 67762-53-2) was tested in a reverse mutation assay according to OECD Guideline 471 and under GLP conditions (Mecchi, 1999). Salmonella typhimurium strains TA1535, TA1537, TA98, TA100 and E. coli WP2 uvrA were used. Tester strains were incubated with test material dissolved in ethanol at concentrations of 33.3, 100, 333, 1000, 3330 and 5000 µg/plate with and without the addition of a metabolic activation system (Aroclor 1254 induced rat liver S9 mix). Vehicle and appropriate positive controls were included into the study design. Positive control materials induced statistically significant increases in the frequency of revertant colonies indicating the satisfactory performance of the test and the activity of the metabolizing system. No increase in the frequency of revertant colonies compared to concurrent negative controls was observed in all strains treated with the test material, neither in the presence nor in the absence of metabolic activation. Thus, Fatty acids, C5-9, tetraesters with pentaerythritol did not induce point mutations by base-pair changes or frame-shifts in the genome of the strains tested.

Formerly 68441-94-1

The mutagenic potential of Reaction mass of Heptanoic acid 3-pentanoyloxy-2,2-bis-pentanoyloxymethyl-propyl ester, Heptanoic acid 2-heptanoyloxymethyl-3-pentanoyloxy-2-pentanoyloxymethyl-propyl ester and Heptanoic acid 3-heptanoyloxy-2-heptanoyloxymethyl-2-pentanoyloxymethyl-propyl ester (CAS 68441-68-9) was tested in a reverse mutation assay according to OECD Guideline 471 and under GLP (Banduhn, 1991). Salmonella typhimurium strains TA1535, TA1537, TA98, TA100 and TA1538 were used. Tester strains were incubated with test material dissolved in Tween 80 at concentrations of 8, 40, 200, 1000 and 5000 µg/plate (no toxicity but tested up to precipitating concentrations) with and without the addition of a metabolic activation system (Arochlor 1254 induced rat liver S9 mix). Vehicle, negative and appropriate positive controls were included into the study design. Positive control materials induced statistically significant increases in the frequency of revertant colonies indicating the satisfactory performance of the test and the activity of the metabolizing system. No increase in the frequency of revertant colonies compared to concurrent negative controls was observed in all strains treated with the test material, neither in the presence nor in the absence of metabolic activation. No cytotoxicity was observed but the test substance was tested up to limit concentrations. Thus, Decanoic acid, mixed esters with octanoic acid and pentaerythritol did not induce point mutations by base-pair changes or frame-shifts in the genome of the strains tested.

CAS 85586-24-9

The mutagenic potential of Fatty acids, C8-10, tetraesters with pentaerythritol (CAS 85586-24-9) was tested in a reverse mutation assay comparable to OECD Guideline 471 and under GLP conditions (Banduhn, 1991). Salmonella typhimurium strains TA1535, TA1537, TA98, TA100 and TA1538 were used. Tester strains were incubated with the test material dissolved in Tween 80 at concentrations of 8, 40, 200, 1000 and 5000 µg/plate (no toxicity but tested up to the limit concentration) with and without the addition of a metabolic activation system (Aroclor 1254 induced rat liver S9 mix). Vehicle, negative and appropriate positive controls were included into the study design. Positive control materials induced statistically significant increases in the frequency of revertant colonies indicating the satisfactory performance of the test and the activity of the metabolizing system. No increase in the frequency of revertant colonies compared to concurrent negative controls was observed in all strains treated with the test material, neither in the presence nor in the absence of metabolic activation. Thus, Fatty acids, C8-10, tetraesters with pentaerythritol did not induce point mutations by base-pair changes or frame-shifts in the genome of the strains tested.

CAS 189200-42-8

The mutagenic potential of Fatty acids C8-10, mixed esters with dipentaerythritol, isooctanoic acid, pentaerythritol and tripentaerythritol (CAS 189200-42-8) was tested in a reverse mutation assay comparable to OECD Guideline 471 and under GLP conditions (Przygoda, 1995). The following Salmonella typhimurium strains TA1535, TA1537, TA98, TA100 and TA1538 were used. Tester strains were incubated with the test material dissolved in acetone at concentrations of 0.5, 5, 50, 500, 5000 µg/plate in the first experiment and 50, 100, 500, 1000 and 5000 µg/plate in the repeat experiment with and without the addition of a metabolic activation system (Arochlor 1254 induced rat liver S9 mix). Vehicle, negative and appropriate positive controls were included into the study design. Positive control materials induced statistically significant increases in the frequency of revertant colonies indicating the satisfactory performance of the test and the activity of the metabolizing system. No increase in the frequency of revertant colonies compared to concurrent negative controls was observed in all strains treated with the test material, neither in the presence nor in the absence of metabolic activation. No cytotoxicity was observed but beading of the test substance occured in the initial assay and repeat assay at 500 µg/plate and above with and without metabolic activation in all strains. Thus, Fatty acids C8-10, mixed esters with dipentaerythritol, isooctanoic acid, pentaerythritoland tripentaerythritoldid not induce point mutations by base-pair changes or frame-shifts in the genome of the strains tested.

In vitro cytogenicity in mammalian cells

CAS 68855-18-5

A chromosome aberration test was conducted with the test substance according to OECD TG 473 and under GLP conditions in human lymphocytes.

Duplicate cultures of human lymphocytes, treated with the test item, were evaluated for chromosome aberrations at three dose levels, together with vehicle and positive controls.

Four treatments conditions were used for the study. In Experiment 1, 4 hours in the presence of an induced rat liver homogenate metabolising system (S9), at a 2% final concentration with cell harvest after a 20-hour expression period and a 4 hours exposure in the absence of metabolic activation (S9) with a 20-hour expression period. In Experiment 2, the 4 hours exposure with addition of S9 was repeated (using a 1% final S9 concentration), whilst in the absence of metabolic activation the exposure time was increased to 24 hours.

The dose levels used in the main experiments, selected using data from the preliminary toxicity test, were 12.5, 25, 50, 100, 200, 400 µg/mL for all the four treatment conditions.

All vehicle (solvent) controls had frequencies of cells with aberrations within the range expected for normal human lymphocytes.

All the positive control items induced statistically significant increases in the frequency of cells with aberrations indicating the satisfactory performance of the test and the activity of the metabolising system.

The test item did not induce any statistically significant increases in the frequency of cells with aberrations, in either the absence or presence of S9, in two separate experiments.

In conclusions the test item was considered to be non-clastogenic to human lymphocytes in vitro.

CAS 85186-86-3

An in vitro mammalian chromosome aberration test was performed with Fatty acids, C8-18 and C18-unsatd., esters with neopentylglycol (CAS 85186-86-3) in cultured peripheral human lymphocytes comparable to OECD Guideline 473 and under GLP conditions (Morris, 2012). Duplicate cultures of human lymphocytes were evaluated for chromosome aberrations in the presence and absence of metabolic activation (rat liver S9-mix). In the first experiment cells were exposed for 4 hours to the test substance dissolved in acetone at concentrations of 40, 80, 160, 320, 480, 640, 960, 1280 µg/mL with and without metabolic activation. In the second experiment cells were exposed for 24 hours without metabolic activation and for 4 hours with metabolic activation. The test substance did not induce cytotoxicity. A cloudy/oily precipitate was visible at 80 µg/mL and above with metabolic activation and at 160 µg/mL without metabolic activation. Vehicle (solvent) controls induced aberration frequencies within the range expected for normal human lymphocytes. Mitomycin C and Cyclophosphamide were used as positive control substances inducing statistically significant increases in aberration frequencies indicating the satisfactory performance of the test and of the activity of the metabolizing system. Evaluation of 100 well-spread metaphase cells from each culture for structural chromosomal aberrations revealed no increase in the frequency of chromosome aberrations and polyploid cells at any dose level tested in comparison to the negative controls. The test material was therefore considered to be non-clastogenic to human lymphocytes in vitro.

CAS 189120-64-7

An in vitro mammalian chromosome aberration test was performed with Fatty acids, C7-8, triesters with trimethylolpropane (CAS 189120-64-7) in Chinese Hamster Ovary cells (CHO) according to OECD Guideline 473 and under GLP conditions (Chirdon, 2000). Duplicate cultures of CHO cells were evaluated for chromosome aberrations in the presence and absence of metabolic activation (Arochlor 1254 induced rat liver S9-mix). A range-finder toxicity test was conducted and the test item was tested at the following doses 20, 39, 78, 156, 313, 625, 1250 and 2500 µg/mL (3 h treatment), with and without S9. In the main experiments, cells were exposed for 3 hours with and without metabolic activation. The test substance was dissolved in acetone and used at concentrations of 75, 250, 2500 µg/mL without metabolic activation and 25, 250, 2500 µg/mL in acetone with metabolic activation. Cytotoxicity was observed at the highest dose tested regardless of metabolic activation. Vehicle (solvent) controls induced aberration frequencies within the range expected. 9,10-Dimethylbenzanthracene and 1-Methyl-3-Nitro-1-Nitrosoguanidine were used as positive control materials inducing statistically significant increases in aberration frequencies indicating the satisfactory performance of the test and of the activity of the metabolizing system. Evaluation of 100 well-spread metaphase cells from each culture for structural chromosomal aberrations revealed no increase in the frequency of chromosome aberrations at any dose level tested in comparison to the negative controls. The test material was therefore considered to be non-clastogenic to CHO cells in vitro.

CAS 11138-60-6

An in vitro mammalian chromosome aberration test was performed with Fatty acids, 8-10 (even numbered), di- and triesters with propylidynetrimethanol (CAS 11138-60-6) in Chinese Hamster Ovary cells (CHO) according to OECD Guideline 473 and under GLP conditions (Gudi, 1996). Duplicate cultures of CHO cells were evaluated for chromosome aberrations in the presence and absence of metabolic activation (Arochlor 1254 induced rat liver S9-mix). Cells were exposed for 4 and 20 hours without and for 4 hours with metabolic activation. The test substance was dissolved in ethanol and used at concentrations of 625, 1250, 2500, 5000 µg/mL. Cytotoxicity was observed at the highest dose tested regardless of metabolic activation. Mitomycin C and cyclophosphamide was used as positive control without and with metabolic activation respectively. Vehicle (solvent) controls induced aberration frequencies within the range expected. Positive control material induced statistically significant increases in aberration frequencies indicating the satisfactory performance of the test and of the activity of the metabolizing system. Evaluation of 200 well-spread metaphase cells from each culture for structural chromosomal aberrations revealed no increase in the frequency of chromosome aberrations at any dose level tested in comparison to the negative controls. The test material was therefore considered to be non-clastogenic to CHO cells in vitro.

CAS 403507-18-6

An in vitro mammalian chromosome aberration test was performed with Fatty acids, C16-18 and C18-unsatd., branched and linear ester with trimethylolpropane (CAS 403507-18-6) in cultured peripheral human lymphocytes comparable to OECD Guideline 473 and under GLP conditions (Durward, 2004). Duplicate cultures of human lymphocytes were evaluated for chromosome aberrations in the presence and absence of metabolic activation (rat liver S9-mix). In the first experiment cells were exposed for 4 hours to the test substance dissolved in acetone at concentrations of 240, 320, 400 µg/mL with and without metabolic activation. In the second experiment cells were exposed for 4 hours to 240, 320, 400 µg/mL with metabolic activation and for 24 hours to 240, 320, 400 µg/mL followed by 24 hours expression time without metabolic activation. The test substance did not induce cytotoxicity but a cloudy precipitate was already visible at 40 µg/mL. Vehicle (solvent) controls induced aberration frequencies within the range expected for normal human lymphocytes. Mitomycin C and Cyclophosphamide were used as positive control materials inducing statistically significant increases in aberration frequencies indicating the satisfactory performance of the test and of the activity of the metabolizing system. Evaluation of 200 well-spread metaphase cells from each culture for structural chromosomal aberrations revealed no increase in the frequency of chromosome aberrations and polyploid cells at any dose level tested in comparison to the negative controls. The test material was therefore considered to be non-clastogenic to human lymphocytes in vitro.

CAS 189200-42-8

An in vitro mammalian chromosome aberration test was performed with Fatty acids C8-10, mixed esters with dipentaerythritol, isooctanoic acid, pentaerythritol and tripentaerythritol (CAS 189200-42-8) in Chinese hamster ovary cells (CHO cells) comparable to OECD Guideline 473 and under GLP conditions (Przygody, 1995). Duplicate cultures of CHO cells were evaluated for chromosome aberrations in the presence and absence of metabolic activation (rat liver S9-mix). In the first experiment, cells were exposed to the test substance for 3 hours and for 16 hours followed by 16 hours expression time with and without metabolic activation, respectively. The test substance was dissolved in acetone and used at concentrations of 40, 80 and 160 µg/mL. In the second experiment cells were again exposed for 3 hours and for 16 hours followed by 16 hours expression time with and without metabolic activation, respectively. Additionally, cells were exposed for 3 and 16 hours followed by 40 hours expression time with and without metabolic activation, respectively. The same substance concentrations as in first experiment were used. The test substance did not induce cytotoxicity but a precipitate was visible in the second experiment at 160 µg/mL after 16 hours incubation without metabolic activation. Vehicle (solvent) controls induced aberration frequencies within the range expected for normal human lymphocytes. N-Methyl-N-Nitro-N-Nitrosoguanidine and 7,12-Dimethylbenz[a]anthracene were used as positive control materials inducing statistically significant increases in aberration frequencies indicating the satisfactory performance of the test and of the activity of the metabolizing system. Evaluation of 100 well-spread metaphase cells from each culture for structural chromosomal aberrations revealed no increase in the frequency of chromosome aberrations and polyploid cells at any dose level tested in comparison to the negative controls. The test material was therefore considered to be non-clastogenic to CHO cells in vitro.

In vitro gene mutation in mammalian cells

CAS 68855-18-5

A L5178Y mouse lymphoma assay was conducted according to OECDTG 476 and under GLP conditions.

Two independent experiments were performed. In Experiment 1, L51787Y TK +/- 3.7.3 c mouse lymphoma cells (heterozygous at the thymidine kinase locus) were treated with the test item at eight dose levels, in duplicate, together with vehicle (solvent) and positive controls using 4 h exposure groups both in absence and presence of metabolic activation(2% S9). In Experiment 2, the cells were treated with the test item at eight dose levels using a 4- h exposure group in the presence of metabolic activation (1% S9) and a 24 h exposure group in the absence of metabolic activation.

The dose range of the test substance was selected following the results of a preliminary toxicity test and was determined to be 1.6 to 102.5 µg/mL in both the absence and presence of metabolic activation in Experiment 1. In Experiment 2 the dose range was 1.6 to 102.5 µg/mL in the absence of metabolic activation, and 3.2 to 205 µg/mL in the presence of metabolic activation.

The maximum dose levels used in the test were limited by precipitate and test substance induced toxicity. A precipitate of the substance was observed at and above 102.5 µg/mL in the mutagenicity test. The vehicle (solvent) controls had acceptable mutant frequency values that were within the normal range for L5178Y cell line at the TK +/- locus. The positive control items induced marked increases in the mutant frequency indicating the satisfactory performance of the test and of the activity of the metabolising system.

The test item did not induce any toxicologically significant dose-related increases in the mutant frequency at any dose level, either with or without metabolic activation, in either the first or the second experiment.

CAS 42222-50-4

An in vitro Mammalian Cell Gene Mutation Assay according to OECD Guideline 476 and GLP was performed with 2,2-dimethyl-1,3-propanediyldioleate (CAS 42222-50-4) in mouse lymphoma L5178Y cells (Flügge, 2012). The cells were treated for 3 hours with and without S9-mix in the first experiment, for 24 hours without S9 mix in the second experiment and again for 3 hours with S9 mix in the third experiment. The test substance was tested at 312.5, 625, 1250, 2500 and 5000 μg/mL. 3-Methylcholanthrene and Methylmethanesulfonate were used as positive controls with and without S9 mix, respectively. No toxicity was observed and all dose levels were evaluated in the absence and presence of S9-mix. Positive and negative controls were valid and in range of historical control data. No significant increase in the mutation frequency at the TK locus was observed after treatment with the test substance either in the absence or in the presence of S9-mix. Thus, it was concluded that 2,2-dimethyl-1,3-propanediyldioleate is not mutagenic in the mouse lymphoma L5178Y test system under the experimental conditions described.

Formerly 85186-89-6

An in vitro Mammalian Cell Gene Mutation Assay according to OECD Guideline 476 and GLP was performed with Fatty acids, C8-10(even), C14-18(even) and C16-18(even)-unsatd., triesters with trimethylolpropane (CAS 85186-89-6) in mouse lymphoma L5178Y cells (Verspeek-Rip, 2010). The cells were treated for 3 and 24 hours with 8% (v/v) and without S9-mix in the first experiment, respectively, and with 12% (v/v) with and without S9-mix in the second experiment, respectively. In the first experiment the test substance was tested at 0.3, 1, 3, 10, 33, 100, 333 and 750 μg/mL up to precipitation with 8% (v/v) and without S9-mix for 3 h. In the second experiment the test substance was tested at 0.3, 1, 3, 10, 33, 100, 333 and 750 μg/mL up to precipitation with 12% (v/v) for 3 hours and without S9-mix for 24 hours Cyclophosphamide and Methylmethanesulfonate were used as positive controls with and without S9 mix, respectively. No toxicity was observed and all dose levels were evaluated in the absence and presence of S9-mix. Positive and negative controls were valid and in range of historical control data. No significant increase in the mutation frequency at the TK locus was observed after treatment with the test substance either in the absence or in the presence of S9-mix. It was concluded that Fatty acids, C8-18 and C18-unsatd., esters with trimethylolpropane is not mutagenic in the mouse lymphoma L5178Y test system under the experimental conditions described.

CAS 15834-04-5

An in vitro Mammalian Cell Gene Mutation Assay according to OECD Guideline 476 and GLP was performed with 2,2-bis[[(1-oxopentyl)oxy]methyl]propane-1,3-diyl divalerate (CAS 15834-04-5) in mouse lymphoma L5178Y cells (Verspeek-Rip, 2010). In the first experiment, the cells were treated for 3 hours with 0.03, 0.1, 0.3, 1, 3, 10, 33, 100 µg/mL in the presence or absence of S9-mix (8% (v/v)). In the second experiment, test concentrations of 0.03, 0.1, 0.3, 1, 3, 10, 33, 100 µg/mL were applied with metabolic activation (12%, v/v) for 3 h and 0.1, 1, 3, 10, 33, 100, 200, 250 µg/mL without metabolic activation for 24 hours. The test substance was tested up to precipitating concentrations (100 µg/mL and above). Cyclophosphamide and methylmethanesulfonate were used as positive controls with and without S9 mix, respectively. No toxicity was observed and all dose levels were evaluated in the absence and presence of S9-mix. Positive and negative controls were valid and in range of historical control data. No significant increase in the mutation frequency at the TK locus was observed after treatment with the test substance either in the absence or in the presence of S9-mix. It was concluded that 2,2-bis[[(1-oxopentyl)oxy]methyl]propane-1,3-diyl divalerate is not mutagenic in the mouse lymphoma L5178Y test system under the experimental conditions described.

 

Genotoxicity in vivo

Fatty acids, C5-10, esters with pentraerythritol (CAS No. 68424-31-7) were found to be not genotoxic in the micronucleus assay in vivo after intraperitoneal application. A single intraperitoneal injection was given to groups of 5 male and 5 female mice at a dose level of 5000 mg/kg bw. Bone marrow samples were taken 24 and 48 hours after dosing.

No statistically or biologically significant increases in the incidence of micronucleated polychromatic erythrocytes over the vehicle control values were seen in either sex at either of the sampling times.

Comparison of the percentage of polychromatic erythrocytes showed no significant differences between the female animals treated with the vehicle control or with the test material. A small, but significant decrease was, however, noted in male mice treated with the test material at 5000 mg/kg bw. This small decrease is, however, considered not to be biologically significant compared to the concurrent control values.

The positive control induced statistically significant and biologically meaningful increases in micronucleated polychromatic erythrocytes, compared to the vehicle control values, thus demonstrating the sensitivity of the test system to a known clastogen (Griffiths, 1992).

Conclusion for genetic toxicity

In summary, several studies are available to assess the mutagenic potential in bacteria within the polyol esters category all providing negative results. Furthermore, no cytogenicity in mammalian cells in-vitro and no mutagenicity in mammalian cells in-vitro were observed with members of the polyol esters category.

In conclusion, all available and reliable in vitro and in vivo studies conducted with polyol esters category members revealed no effects on genetic toxicity. 

 

Short description of key information:

In none of these studies mutagenicity in bacteria could be observed.

In none of these studies clastogenic effects in mammalian cells could be observed.

In none of these studies mutagenicity in mammalian cells could be observed.

Endpoint Conclusion: No adverse effect observed (negative)

Justification for classification or non-classification

According to Article 13 of Regulation (EC) No. 1907/2006 "General Requirements for Generation of Information on Intrinsic Properties of substances", information on intrinsic properties of substances may be generated by means other than tests e.g. from information from structurally related substances (grouping or read-across), provided that conditions set out in Annex XI are met. Annex XI, "General rules for adaptation of this standard testing regime set out in Annexes VII to X” states that “substances whose physicochemical, toxicological and ecotoxicological properties are likely to be similar or follow a regular pattern as a result of structural similarity may be considered as a group, or ‘category’ of substances. This avoids the need to test every substance for every endpoint".Since the category concept is applied to the polyol esters, data gaps will be filled by interpolation, as part of a read across approach from a representative category member(s) to avoid unnecessary animal testing. Additionally, once the category concept is applied, substances will be classified and labelled on this basis. Therefore, based on the group concept, all available data on genetic toxicity do not meet the classification criteria according to Regulation (EC) 1272/2008 or Directive 67/548/EEC, and are therefore conclusive but not sufficient for classification.