Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Administrative data

Key value for chemical safety assessment

Genetic toxicity in vitro

Link to relevant study records
Reference
Endpoint:
in vitro gene mutation study in bacteria
Type of information:
experimental study
Adequacy of study:
key study
Study period:
From 22 April 2020 to 04 May 2020
Reliability:
1 (reliable without restriction)
Rationale for reliability incl. deficiencies:
guideline study
Qualifier:
according to guideline
Guideline:
EPA OPPTS 870.5100 - Bacterial Reverse Mutation Test (August 1998)
Deviations:
no
Qualifier:
according to guideline
Guideline:
EU Method B.13/14 (Mutagenicity - Reverse Mutation Test Using Bacteria)
Deviations:
no
Qualifier:
according to guideline
Guideline:
OECD Guideline 471 (Bacterial Reverse Mutation Assay)
Deviations:
no
GLP compliance:
yes (incl. QA statement)
Type of assay:
bacterial reverse mutation assay
Target gene:
Histidine locus in the genome of Salmonella typhimurium and tryptophan locus in the genome of
Escherichia coli
Species / strain / cell type:
S. typhimurium TA 1535, TA 1537, TA 98, TA 100 and E. coli WP2
Metabolic activation:
with and without
Metabolic activation system:
The Phenobarbitone / β-Naphthoflavone induced S9 Microsomal fractions (Sprague-Dawley) used in this study were purchased from Moltox; Lot No. 4146 and the protein level was adjusted to 20 mg/mL. The S9-mix was prepared before use using sterilized co-factors and maintained on ice for the duration of the test.
Test concentrations with justification for top dose:
Experiment 1: 1.5, 5, 15, 50, 150, 500, 1500 and 5000 μg/plate.
Experiment 2: 5, 15, 50, 150, 500, 1500 and 5000 μg/plate.
Vehicle / solvent:
- Vehicle(s)/solvent(s) used: Acetonitrile

- Justification for choice of solvent/vehicle: The test item was insoluble in sterile distilled water, dimethyl sulphoxide, dimethyl formamide and acetonitrile at 50 mg/mL, acetone at 100 mg/mL and tetrahydrofuran at 200 mg/mL in solubility checks performed in–house. In cases where a test item is insoluble in the standard Ames recommended solvents the vehicle which produces the best suspension is sought. In this case, the best doseable suspension was considered to be in acetonitrile at a maximum concentration of 50 mg/mL. Acetonitrile was therefore selected as the vehicle. The test item formed the best doseable suspension in acetonitrile, therefore, this solvent was selected as the vehicle.
Untreated negative controls:
no
Negative solvent / vehicle controls:
yes
Remarks:
Acetonitrile
True negative controls:
no
Positive controls:
yes
Positive control substance:
4-nitroquinoline-N-oxide
9-aminoacridine
N-ethyl-N-nitro-N-nitrosoguanidine
benzo(a)pyrene
other: 2-Aminoanthracene
Details on test system and experimental conditions:
Test for Mutagenicity: Experiment 1 – Plate Incorporation Method
- Dose selection
The test item was tested using the following method. The maximum concentration was 5000 μg/plate (the OECD TG 471 maximum recommended dose level). Eight concentrations of the test item (1.5, 5, 15, 50, 150, 500, 1500 and 5000 μg/plate) were assayed in triplicate against each tester strain, using the direct plate incorporation method.
- Without Metabolic Activation
A 0.1 mL aliquot of the appropriate concentration of test item, solvent vehicle or 0.1 mL of the appropriate positive control was added together with 0.1 mL of the bacterial strain culture, 0.5 mL of phosphate buffer and 2 mL of molten, trace amino-acid supplemented media. These were then mixed and overlayed onto a Vogel-Bonner agar plate. Negative (untreated) controls were also performed on the same day as the mutation test. Each concentration of the test item, appropriate positive, vehicle and negative controls, and each bacterial strain, was assayed using triplicate plates.
- With Metabolic Activation
The procedure was the same as described previously (see 3.3.2.2) except that following the addition of the test item formulation and bacterial culture, 0.5 mL of S9-mix was added to the molten, trace amino-acid supplemented media instead of phosphate buffer.
- Incubation and Scoring
All of the plates were incubated at 37 ± 3 °C for between 48 and 72 hours and scored for the presence of revertant colonies using an automated colony counting system. The plates were viewed microscopically for evidence of thinning of the background bacterial lawn (toxicity). Manual counts were performed at 5000 μg/plate because of test item precipitation.

Test for Mutagenicity: Experiment 2 – Pre-Incubation Method
As the result of Experiment 1 was considered negative, Experiment 2 was performed using the pre-incubation method in the presence and absence of metabolic activation (S9-mix).
- Dose selection
The dose range used for Experiment 2 was determined by the results of Experiment 1 and was 5, 15, 50, 150, 500, 1500 and 5000 μg/plate.
Seven test item concentrations were selected in Experiment 2 in order to ensure the study achieved at least four non-toxic dose levels as required by the test guideline, and were selected based on the lack of cytotoxicity noted in Experiment 1, and the potential for a change in the cytotoxicity of the test item following the change in test methodology from plate incorporation to pre-incubation.
- Without Metabolic Activation
A 0.1 mL aliquot of the appropriate bacterial strain culture, 0.5 mL of phosphate buffer and 0.1 mL of the appropriate concentration of test item formulation, solvent vehicle or 0.1 mL of appropriate positive control were incubated at 37 ± 3 °C for 20 minutes (with shaking) prior to addition of 2 mL of molten, trace amino-acid supplemented media and subsequent plating onto Vogel-Bonner plates. Negative (untreated) controls were also performed on the same day as the mutation test employing the plate incorporation method. All testing for this experiment was performed in triplicate.
- With Metabolic Activation
The procedure was the same as described previously (see 3.3.3.2) except that following the addition of the test item formulation and bacterial strain culture, 0.5 mL of S9-mix was added to the tube instead of phosphate buffer, prior to incubation at 37 ± 3 °C for 20 minutes (with shaking) and addition of molten, trace amino-acid supplemented media. All testing for this experiment was performed in triplicate.
- Incubation and Scoring
All of the plates were incubated at 37 ± 3 °C for between 48 and 72 hours and scored for the presence of revertant colonies using an automated colony counting system. The plates were viewed microscopically for evidence of thinning of the background bacterial lawn (toxicity). Manual counts were performed at 5000 μg/plate because of test item precipitation.
Rationale for test conditions:
In accordance with the OECD Testing Guideline 471.
Evaluation criteria:
There are several criteria for determining a positive result. Any, one, or all of the following can be used to determine the overall result of the study:
1. A dose-related increase in mutant frequency over the dose range tested (De Serres and Shelby, 1979).
2. A reproducible increase at one or more concentrations.
3. Biological relevance against in-house historical control ranges.
4. A fold increase greater than two times the concurrent solvent control for TA100, TA98 and WP2uvrA or a three-fold increase for TA1535 and TA1537 (especially if accompanied by an out-of-historical range response (Cariello and Piegorsch, 1996)).
5. Statistical analysis of data as determined by UKEMS (Mahon et al., 1989).
A test item is considered non-mutagenic (negative) in the test system if the above criteria are not met.
Although most experiments give clear positive or negative results, in some instances the data generated prohibit making a definite judgment about test item activity. Results of this type are reported as equivocal.
Statistics:
Statistical significance was confirmed by using Dunnett’s Regression Analysis (* = p < 0.05) for those values that indicate statistically significant increases in the frequency of revertant colonies compared to the concurrent solvent control. Values that are statistically significant but are within the in-house historical vehicle/untreated control range are not flagged for statistical significance in the data tables.
Key result
Species / strain:
S. typhimurium TA 1535
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity
Vehicle controls validity:
valid
Untreated negative controls validity:
not examined
True negative controls validity:
not examined
Positive controls validity:
valid
Key result
Species / strain:
S. typhimurium TA 1537
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity
Vehicle controls validity:
valid
Untreated negative controls validity:
not examined
True negative controls validity:
not examined
Positive controls validity:
valid
Key result
Species / strain:
S. typhimurium TA 98
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity
Vehicle controls validity:
valid
Untreated negative controls validity:
not examined
True negative controls validity:
not examined
Positive controls validity:
valid
Key result
Species / strain:
S. typhimurium TA 100
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity
Vehicle controls validity:
valid
Untreated negative controls validity:
not examined
True negative controls validity:
not examined
Positive controls validity:
valid
Key result
Species / strain:
E. coli WP2 uvr A
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity
Vehicle controls validity:
valid
Untreated negative controls validity:
not examined
True negative controls validity:
not examined
Positive controls validity:
valid
Additional information on results:
One statistically significant value was noted (TA100 at 50 μg/plate in the absence of metabolic activation (S9-mix), however as the maximum fold increase was only 1.2 times the concurrent vehicle control and the mean colony count was within the in-house historical vehicle/untreated control range for the strain the response was considered of no biological relevance.
Conclusions:
No significant increases in the frequency of revertant colonies for any of the bacterial strains were recorded. Fatty acids, C16-18, reaction products with ethanolamine was considered to be non-mutagenic under the conditions of this test.
Executive summary:

The potential of Fatty acids, C16-18, reaction products with ethanolamine to induce gene mutation in bacteria was assessed using a GLP-compliant study performed in accordance with the OECD Testing Guideline 471. Experiments were performed with and without metabolic activation using S9-mix. The Bacterial strains used were Salmonella typhimurium, TA98, TA100, TA1535 and TA1537 and Escherichia coli WP2uvrA. Acetonitrile was selected as a vehicle and used for negative control, yielding counts of revertant colonies within the normal range. All the positive controls used induced marked increases in the frequency of revertant colonies, both with or without metabolic activation. Therefore, the sensitivity of the assay and efficacy of the S9-mix were considered as valid.


The test item Fatty acids, C16-C18, reaction products with ethanolamine did not induce an increase in the frequency of revertant colonies that met the criteria for a positive result, either with or without metabolic activation (S9-mix). Under the conditions of this test Fatty acids, C16-C18, reaction products with ethanolamine was considered to be non-mutagenic. 

Additional information

Justification for classification or non-classification

No significant increases in the frequency of revertant colonies for any of the bacterial strains were recorded. Fatty acids, C16-18, reaction products with ethanolamine was considered to be non-mutagenic.