Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Physical & Chemical properties

Vapour pressure

Currently viewing:

Administrative data

Link to relevant study record(s)

Referenceopen allclose all

Endpoint:
vapour pressure
Type of information:
(Q)SAR
Adequacy of study:
weight of evidence
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
results derived from a valid (Q)SAR model and falling into its applicability domain, with adequate and reliable documentation / justification
Justification for type of information:
1. SOFTWARE
ARChem SPARC. version 4.6

2. MODEL
Properties - Vapor Pressure

3. SMILES OR OTHER IDENTIFIERS USED AS INPUT FOR THE MODEL
See “Test material information”

4. SCIENTIFIC VALIDITY OF THE (Q)SAR MODEL
Information on the OECD criteria as outlined by the applicant is provided below under "Any other information of materials and methods incl. tables".

5. APPLICABILITY DOMAIN
See information provided in "Any other information of materials and methods incl. tables".

6. ADEQUACY OF THE RESULT
See assessment of adequacy as outlined in the "Overall remarks, attachments" section.
Qualifier:
according to guideline
Guideline:
other:
Version / remarks:
REACH Guidance on QSARs R.6
Principles of method if other than guideline:
Calculation based on SPARC version v4.6, "Properties" calculation type

- Software tool(s) used including version: SPARC v4.6
- Model(s) used: Properties - Vapor Pressure (Pa)
The model utilizes a conventional LFER (Linear Free Energy Relationships), SAR (Structure Activity Relationships) and PMO (Perturbed Molecular Orbital) theory. For the complete method's description see field 'Any other information on materials and methods incl. tables'.
The datasets used for the model development (315 molecules) and for the external validation (747 molecules) are described in the field 'Any other information on materials and methods incl. tables'.
- Model description: see field 'Any other information on materials and methods incl. tables'.
- Justification of QSAR prediction: see field 'Justification for type of information' and 'overall remarks'.
GLP compliance:
no
Type of method:
other: QSAR
Key result
Temp.:
20 °C
Vapour pressure:
0 Pa

QSAR result; transition/decomposition is not specified/reported. For detailed description of the model and its applicability, see "Any other information on materials and methods incl. tables".

Endpoint:
vapour pressure
Type of information:
(Q)SAR
Adequacy of study:
weight of evidence
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
results derived from a valid (Q)SAR model and falling into its applicability domain, with adequate and reliable documentation / justification
Justification for type of information:
1. SOFTWARE
ARChem SPARC. version 4.6

2. MODEL
Properties - Vapor Pressure

3. SMILES OR OTHER IDENTIFIERS USED AS INPUT FOR THE MODEL
See “Test material information”

4. SCIENTIFIC VALIDITY OF THE (Q)SAR MODEL
Information on the OECD criteria as outlined by the applicant is provided below under "Any other information of materials and methods incl. tables".

5. APPLICABILITY DOMAIN
See information provided in "Any other information of materials and methods incl. tables".

6. ADEQUACY OF THE RESULT
See assessment of adequacy as outlined in the "Overall remarks, attachments" section.
Qualifier:
according to guideline
Guideline:
other:
Version / remarks:
REACH Guidance on QSARs R.6
Principles of method if other than guideline:
Calculation based on SPARC version v4.6, "Properties" calculation type

- Software tool(s) used including version: SPARC v4.6
- Model(s) used: Properties - Vapor Pressure (Pa)
The model utilizes a conventional LFER (Linear Free Energy Relationships), SAR (Structure Activity Relationships) and PMO (Perturbed Molecular Orbital) theory. For the complete method's description see field 'Any other information on materials and methods incl. tables'.
The datasets used for the model development (315 molecules) and for the external validation (747 molecules) are described in the field 'Any other information on materials and methods incl. tables'.
- Model description: see field 'Any other information on materials and methods incl. tables'.
- Justification of QSAR prediction: see field 'Justification for type of information' and 'overall remarks'.
GLP compliance:
no
Type of method:
other: QSAR
Key result
Temp.:
20 °C
Vapour pressure:
0 Pa

QSAR result; transition/decomposition is not specified/reported. For detailed description of the model and its applicability, see "Any other information on materials and methods incl. tables".

Endpoint:
vapour pressure
Type of information:
experimental study
Adequacy of study:
weight of evidence
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
data from handbook or collection of data
Principles of method if other than guideline:
public available peer reviewed source
GLP compliance:
not specified
Type of method:
other: public available peer reviewed source
Temp.:
25 °C
Vapour pressure:
0.022 Pa

Description of key information

<0.0001 Pa at 20 °C (QSAR, ARChem SPARC. version 4.6)

Key value for chemical safety assessment

Additional information

Overall results

The following table summarizes the results obtained for the three representative components of the substance.

 

C10 monoester

C10 diester

Glycerol

Vapour pressure at 20 °C (QSAR, Sparc)

1.01E-5 Pa

4.65E-9 Pa

n.c.

Experimental vapour pressure

n.a.

n.a.

0.0224 Pa at 25 °C

n.a.: not available

n.c.: not calculated

 

Discussion

SPARC physical property models have been designed and parameterized to be applicable to any organic chemical structure. The vapour pressure model validation, performed on a dataset of 747 molecules, proved that the model can be used to provide reliable estimations. It is however not possible to perform a clear evaluation of the model’s applicability domain.

Esters of fatty acids and alcohol with high molecular weight and long carbon chains are usually low volatile molecules, associated with low vapour pressure.

According to analytical information, free glycerol can be also present in the final composition of the substance (maximum 10%). Experimental value for vapour pressure is available for this substance (Daubert and Danner, 1989), suggesting a higher volatility compared to the esters components (0.0224 Pa).

 

Conclusion

Considering the results obtained from QSAR evaluation, a vapour pressure < 0.0001 Pa can be considered as a reasonable estimation for the substance.