Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Administrative data

Description of key information

Skin Irritation

A study was designed and conducted to determine the acute dermal toxicity profile of the test chemical in Sprague Dawley rats. The test chemical was applied to shorn skin of 5 male and 5 female animals at 2000 mg/kg body weight.

Administration of the test item at 2000 mg/kg did not result in any skin reaction at the site of application during the study period of 14 days. The overall irritation score of the substance was obtained to be 0 and no erythema and edema (skin irritation) were observed at the end of 14 days observation period after patch removal. Hence, it was concluded that the test chemical was non-Irritating to the skin of rats under the experimental conditions tested.

Eye Irritation

The ocular irritation potential of test article was determined according to the OECD 492 test guideline for this study. The test chemical was determined to be 97.9%. Hence, under the experimental test conditions it was concluded that test chemical was considered to be not irritating to the human eyes.

Key value for chemical safety assessment

Skin irritation / corrosion

Link to relevant study records
Reference
Endpoint:
skin irritation: in vivo
Type of information:
experimental study
Adequacy of study:
key study
Reliability:
1 (reliable without restriction)
Rationale for reliability incl. deficiencies:
comparable to guideline study
Justification for type of information:
Data is from experimental report
Qualifier:
according to guideline
Guideline:
other: OECD Guideline 402 (Acute Dermal Toxicity)
Principles of method if other than guideline:
A study was designed and conducted to determine the acute dermal toxicity profile of the test chemical
GLP compliance:
yes
Species:
rat
Strain:
Sprague-Dawley
Details on test animals or test system and environmental conditions:
TEST ANIMALS
- Source: National Institute of Biosciences, Pune.
- Age at study initiation: Young adult male and female rats aged between 6 – 9 weeks were used.
- Weight at study initiation: The weight range of approximately 217.1 to 255.7 grams at initiation of dosing were used.
Body weights at the start :
Male
Mean : 246.04 g (= 100 %)
Minimum : 238.3 g (- 3.15 %)
Maximum : 255.7 g (+ 3.93 %)
Total No. of animals : 5
Female
Mean : 223.74 g (= 100 %)
Minimum : 217.1 g (- 2.97 %)
Maximum : 231.3 g (+ 3.38 %)
Total No. of animals : 5
- Housing: The rats were individually housed in polycarbonate cages with paddy husk as bedding.
- Diet (e.g. ad libitum): Rodent feed supplied by the Nutrivet Life Sciences, Pune, was provided ad libitum from individual feeders.
- Water (e.g. ad libitum): Water was provided ad libitum from individual bottles attached to the cages. All water was from a local source and passed through the reverse osmosis membrane before use.
- Acclimation period : 5 days.

ENVIRONMENTAL CONDITIONS
- Temperature (°C): Room temperature was maintained at 20.0 to 22.3 degree centigrade.
- Humidity (%): Room humidity was maintained at 55.7% to 59.6%.
- Air changes (per hr): The animal room was independently provided with at least ten to fifteen air changes per hour of 100% fresh air that had been passed through the HEPA filters.
- Photoperiod (hrs dark / hrs light): An artificial light and dark cycle of 12 hours each was provided to the room.

IN-LIFE DATES: No data
Type of coverage:
occlusive
Preparation of test site:
clipped
Vehicle:
unchanged (no vehicle)
Controls:
not specified
Amount / concentration applied:
TEST MATERIAL
- Amount(s) applied (volume or weight with unit): 2000 mg/kg bw
- Concentration (if solution): no

VEHICLE (not used)
- Amount(s) applied (volume or weight with unit):No data
- Concentration (if solution): No data
- Lot/batch no. (if required): No data
- Purity: No data

NEGATIVE CONTROL
- Amount(s) applied (volume or weight): No data
- Concentration (if solution): No data

POSITIVE CONTROL
- Amount(s) applied (volume or weight): No data
- Concentration (if solution): No data
Duration of treatment / exposure:
24 hrs
Observation period:
14 days
Number of animals:
10 (5/sex).
Details on study design:
TEST SITE
- Area of exposure: Dorsal surface and sides from scapular to pelvic area.
- % coverage: Approximately 10% of the total body surface area.
- Type of wrap if used: Porous gauze dressing and non-irritating tape.

REMOVAL OF TEST SUBSTANCE
- Washing (if done): Distilled water was used to remove residual test item.
- Time after start of exposure: 24 hours

OBSERVATION TIME POINTS
(indicate if minutes, hours or days) : observations were conducted at 10, 30, 60 minutes, 2, 4 and 6 hours on the day of dosing and once daily thereafter for 14 day.

SCORING SYSTEM: Draize Method.
Irritation parameter:
erythema score
Basis:
mean
Time point:
14 d
Score:
0
Reversibility:
not specified
Remarks on result:
no indication of irritation
Irritation parameter:
edema score
Basis:
mean
Time point:
14 d
Score:
0
Reversibility:
not specified
Remarks on result:
no indication of irritation
Irritant / corrosive response data:
Overall result:
Sex : Male
Group I -
Animal treated at the dose level of 2000 mg/kg body weight did not result in any skin reaction during the study period of 14 days.

Sex : Female
Group I -
Animal treated at the dose level of 2000 mg/kg body weight did not result in any skin reaction during the study period of 14 days.

Other effects:
Clinical signs
Sex : Male
Group I -
Animal treated at the dose level of 2000 mg/kg body weight did not result in any signs of toxicity during the study period of 14 days. All animals survived through the study period of 14 days.

Sex : Female
Group I -
Animal treated at the dose level of 2000 mg/kg body weight did not result in any signs of toxicity during the study period of 14 days. All animals survived through the study period of 14 days.

Body Weight
Sex : Male
Group I (2000 mg/kg) - Percent body weight gain after 7 days and 14 days was found to be 10.18% and 19.28% respectively.

Sex : Female
Group I (2000 mg/kg) - Percent body weight gain after 7 days and 14 days was found to be 5.60% and 11.43% respectively.

Mortality
Sex : Male
Group I - All animals survived through the study period of 14 days.

Sex : Female
Group I - All animals survived through the study period of 14 days.


Gross Pathological Findings
Gross pathological examination did not reveal any abnormalities in animals from 2000 mg/kg dose group.

Table No. I

 

Summary of Evaluation of Dermal Reaction

Test System : Sprague Dawley Rat

Sex : Male 

Group

 No.

Dose mg/kg

                          

Dermal Reaction

Total Number of

Animals

 

Animal Nos.

Period of signs in days

 From - to

 

Mortality

I

2000

No dermal reaction observed

5

1 - 5

0 - 14

0/5

 

 

Sex : Female

 

Group

 No.

Dose mg/kg

                          

Dermal Reaction

Total Number of

Animals

 

Animal Nos.

Period of signs in days

 From - to

 

Mortality

I

2000

No dermal reaction observed

5

6 - 10

0 - 14

0/5

  

Table No.II

 

Individual Animal - Evaluation of Dermal Reaction

 

Laboratory Test Item Code :TAS/122/008

Test System : Sprague Dawley Rat

Sex : Male  

Group : I

Dose  : 2000 mg/kg body weight

Animal

Dermal

D A Y S

 

No.

Reaction

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1

Erythema

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

 

Oedema

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

Erythema

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

 

Oedema

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

3

Erythema

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

 

Oedema

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

4

Erythema

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

 

Oedema

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

5

Erythema

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

 

Oedema

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

 

Sex : Female  

Group : I

Dose  : 2000 mg/kg body weight

Animal

Dermal

D A Y S

 

No.

Reaction

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

6

Erythema

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

 

Oedema

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

7

Erythema

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

 

Oedema

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

8

Erythema

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

 

Oedema

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

9

Erythema

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

 

Oedema

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

10

Erythema

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

 

Oedema

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

 

Interpretation of results:
other: Not irritating
Conclusions:
The overall irritation score of the substance was obtained to be 0 and no erythema and edema (skin irritation) were observed at the end of 14 days observation period after patch removal. Hence, it was concluded that the test chemical was non-Irritating to the skin of rats under the experimental conditions tested .
Executive summary:

A study was designed and conducted to determine the acute dermal toxicity profile of the test chemical in Sprague Dawley rats. The test chemical was applied to shorn skin of 5 male and 5 female animals at 2000 mg/kg body weight.

The animals were kept in their cages for at least 5 days prior to administration for acclimatization to the laboratory condition and after acclimatization period, animals were randomly selected. Approximately 24 hours before application, the hair of each rat was closely clipped from the trunk (dorsal surface and sides from scapular to pelvic area) with an electric clipper, so as to expose at least 10% of the body surface area. The test item was applied directly onto the exposed skin of the animal, taking care to spread the test item evenly over the entire area of approximately 10% of the total body surface area or as much of the area as can reasonably be covered. The test item was held in contact with the skin using a porous gauze dressing and non irritating tape around the animal to cover the exposure site for first 24 hours exposure period. Elizabethan collar was placed on each animal for first 24 hours after application of the test item. These collars prevent ingestion of test item. Following 24 hours of exposure, the wrapping was removed and the test site wiped free of excess test item. Distilled water was used to remove residual test item.

Administration of the test item at 2000 mg/kg did not result in any skin reaction at the site of application during the study period of 14 days. The overall irritation score of the substance was obtained to be 0 and no erythema and edema (skin irritation) were observed at the end of 14 days observation period after patch removal. Hence, it was concluded that the test chemical was non-Irritating to the skin of rats under the experimental conditions tested .

Endpoint conclusion
Endpoint conclusion:
no adverse effect observed (not irritating)

Eye irritation

Link to relevant study records
Reference
Endpoint:
eye irritation: in vitro / ex vivo
Type of information:
experimental study
Adequacy of study:
key study
Reliability:
1 (reliable without restriction)
Rationale for reliability incl. deficiencies:
guideline study
Justification for type of information:
Data is from experimental study report.
Qualifier:
according to guideline
Guideline:
OECD Guideline 492 (Reconstructed Human Cornea-like Epithelium (RhCE) Test Method for Identifying Chemicals Not Requiring Classification and Labelling for Eye Irritation or Serious Eye Damage)
Principles of method if other than guideline:
The purpose of this study was to assess potential for the test article to be ocular irritants. The ocular irritation potential of a test article may be predicted by measurement of its cytotoxic effect, as reflected in the (MTT) assay, in the MatTek EpiOcular™ model
GLP compliance:
no
Species:
other: humans
Strain:
other: Not applicable
Details on test animals or tissues and environmental conditions:
- Description of the cell system used:
The normal human-derived keratinocytes were cultured at the air-liquid interface in a chemically defined medium on a permeable polycarbonate insert (surface 0.5 cm2). They were cultured in chemically defined serum free medium to form a multi-layered epithelium similar to that found in native corneal mucosa. Each lot of tissues was Quality Assured by MatTek according to specific QC standards including: histology, tissue viability (MTT mean optical density), reproducibility (SD) and tissue thickness.

- Test System Identification
All of the EpiOcular™ 3-dimensional human tissues used in this study were identified by the date of arrival and the lot number. Certificate of Analysis for the tissues is included in this report. Tissue plates were appropriately labeled with study information. Bias was not a factor in this test system.
- Justification of the test method and considerations regarding applicability
EpiOcularTM Eye Irritation (OCL) by MatTek In Vitro Life Science Laboratories, Bratislava, Slovakien

The test articles and controls were evaluated for potential ocular irritancy using the EpiOcular™ 3 dimensional human tissue model purchased from MatTek,In Vitro Life Science Lab. (Bratislava, Slovakia).The EpiOcular tissue construct is a nonkeratinized epithelium prepared from normal human keratinocytes (MatTek). It models the cornea epithelium with progressively stratified, but not cornified cells. These cells are not transformed or transfected with genes to induce an extended life span in culture. The “tissue” is prepared in inserts with a porous membrane through which the nutrients pass to the cells. A cell suspension is seeded into the insert in specialized medium. After an initial period of submerged culture, the medium is removed from the top of the tissue so that the epithelial surface is in direct contact with the air. This allows the test material to be directly applied to the epithelial surface in a fashion similar to how the corneal epithelium would be exposed in vivo. Each lot of tissues was Quality Assured by MatTek, Inc. according to specific QC standards including: histology (cell layers), tissue viability (MTT mean optical density) and reproducibility (SD).
Vehicle:
unchanged (no vehicle)
Controls:
yes, concurrent positive control
yes, concurrent negative control
Amount / concentration applied:
TEST MATERIAL
- Amount(s) applied (volume or weight with unit): 50 mg of solid test chemical
- Concentration (if solution): neat (undiluted)

VEHICLE (no vehicle)
- Amount(s) applied (volume or weight with unit): none
- Concentration (if solution): none
- Lot/batch no. (if required): none
- Purity: none

NEGATIVE CONTROL
- Amount(s) applied (volume or weight): 50 μL
- Concentration (if solution): neat

POSITIVE CONTROL
- Amount(s) applied (volume or weight): 50 μL
- Concentration (if solution): neat
Duration of treatment / exposure:
Tissues were exposed for approximately 6 hrs ± 15 min for solid test articles, and controls, at approximately 37°C, 5% CO2 in a humidified incubator.
Observation period (in vivo):
Not applicable
Duration of post- treatment incubation (in vitro):
Following the washing and post soak, the tissues were rinsed and incubated at approximately 37°C, 5% CO2 in a humidified incubator for a post-exposure recovery time of 18 hours for solid test chemicals and controls
Number of animals or in vitro replicates:
2 tissues were used for test compound and control.
Details on study design:
- Details of the test procedure used
The tissues were exposed to the test article neat (undiluted). EpiOcular™ tissues were purchased from MatTek. Quality control of the tissues was performed by MatTek and the Certificate of Analysis (CoA)
for the tissues is provided and is kept in the study binder. Tissues were exposed for approximately 6 hrs ± 15 min for solid test articles and controls at approximately 37°C, 5% CO2 in a humidified incubator.
After the exposure, the test article was rinsed off the tissues and the tissues were soaked in media for ~25 minutes for solid test articles and controls.Following the washing and post soak, the tissues were rinsed and incubated at approximately 37°C, 5% CO2 in a humidified incubator for a post-exposure recovery time of 18 hours for solid test chemicals and controls.Tissue viability was assessed by 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay.

- MTT Auto reduction and colouring assessment
MTT Pre-test
The test article was assessed for the potential to interfere with the assay. Approximately 50 µL of liquid test article was added to 1 mL of MTT media (~1 mg/mL) and incubated in a humidified incubator at approximately 37°C and approximately 5% CO2 for 3 hours. 50 µL of ultrapure water was used as a negative control.
- Test Article Color Test
Approximately 50 µL of liquid test article was added to 1.0 mL of ultrapure water and 2.0 mL isopropanol and incubated in a humidified incubator at approximately 37°C and approximately 5% CO2 for 2 hours, 04 minutes and 35 seconds. Samples were then added to the wells of a clear 96-well plate and the plate was read on a Thermo Scientific Multiskan FC Microplate Photometer to 570 nm. Test articles that tested positive for excessive coloration (OD >0.08) were assessed on living-tissue controls that were incubated in both culture media and MTT media as well (n=3 for both conditions).

- MTT Assay:
Inserts are removed from the 24-well plate after 3 hrs of incubation and the bottom of the insert is blotted on absorbent material, and then transferred to a pre-labeled 6-well plate containing 1 ml isopropanol in each well so that no isopropanol is flowing into the insert. At the end of the non-submerged extraction inserts and tissues are discarded without piercing and 1 ml of isopropanol is added into each well. The extract solution is mixed and the optical density of the extracted formazan (200 μL/well of a 96-well plate) was determined using Thermo Scientific Multiskan FC Microplate Photometer at 570 nm. Relative cell viability was calculated for each tissue as % of the mean negative control tissues.

- Evaluation of Test Article in the cell Models
1. Cell System:
Upon receipt, the MatTek EpiOcular™ tissue cultures were placed in 1.0 mL of fresh Maintenance medium (in a 6-well plate) for 60 minutes. After the 60 minutes incubation, the Maintenance medium was exchanged with fresh medium and the tissues were incubated overnight (16-24 hrs) at approximately 37°C, approximately 5% CO2 in a humidified incubator.
2. Control and Test Article Exposures:
20 µL of calcium and magnesium free DPBS was added to each tissue and the tissues placed back into the incubator for 30 minutes. The controls and the test article will be applied topically to tissues by pipette.2 tissues will be used per test compound and control.
a)Controls: 50 µL of negative control sterile ultrapure water and positive control methyl acetate were added to the tissues. The tissues were placed into the ~37°C humidified incubator with 5% CO2 for the approximately 30 minute exposure time.
b)Test Article: When a solid was tested, 50 mg of the solid were added to the tissues. The tissues were placed into the ~37°C humidified incubator with 5% CO2 for the approximately 6 hrs ± 15 min.
3. Post exposure treatment:
After the exposure, the tissues were rinsed 20 times with sterile of DPBS to remove test material. The apical surface was gently blotted with a cotton swab and cultures were immediately transferred to a 12-well plate containing 5 mL of media per well. Tissues exposed to liquid test articles (and the respective control) were incubated, submerged in the media for ~12 minutes at room temperature.For liquid test articles, tissues, Tissuses were then transferred to 6-well plates containing 1.0 mL fresh Maintenance medium per well and incubated for a post-exposure recovery period for 2 hours at approximately 37 degC, 5% CO2 in a humidified incubator.
- Doses of test chemical and control substances used
Test Article:
When a solid was tested, 6 hours of the solid were added to the tissues. The tissues were placed into the ~37°C humidified incubator with 5% CO2 for the approximately 6 hrs ± 15 min.
Controls: 50 µL of negative control sterile ultrapure water, positive control methyl acetate were added to the tissues. The tissues were placed into the ~37°C humidified incubator with 5% CO2 for the approximately 30 minute exposure time.

- Duration and temperature of exposure, post-exposure immersion and post-exposure incubation periods:
Tissues were exposed for approximately 6 hours for solid test articles and controls, at approximately37°C, 5% CO2 in a humidified incubator.
Following the post soak, the tissues were rinsed and incubated at approximately 37°C, 5% CO2 in a humidified incubator for a post-exposure recovery time totaling 18 hours for solid test articles and controls.

- Justification for the use of a different negative control than ultrapure H2O (Not applicable)
- Justification for the use of a different positive control than neat methyl acetate (Not applicable)
- Number of tissue replicates used per test chemical and controls: 2 tissues were used for test compound and control.
- Description of the method used to quantify MTT formazan
The blue formazan salt was extracted by placing the tissue insterts in 1 mL isopropanol in a 6-well plate. The extraction for solid exposed tissues was 3 hrs incubation. After an addition of 1 ml isopropanol and mixing, the optical density of the extracted formazan (200μL/well of a 96-well plate) was determined using a Thermo Scientific Multiskan FC Microplate Photometer at 570 nm.

- Description of evaluation criteria used including the justification for the selection of the cut-off point for
the prediction model
Calculations and Statistical Methods
MTT Assay
Blanks:
· The OD mean from all replicates for each plate (ODblank).
Negative Controls (NC):
· The blank corrected value was calculated: ODNC= ODNCraw– ODblank.
· The OD mean per NC tissue was calculated.
· The mean OD for all tissues corresponds to 100% viability.
· The mean, standard deviation (SD), standard error of the mean (SEM) and the percent coefficient of variation (% CV) was calculated.
ODblank= optical density of blank samples (isopropanol alone).
ODNCraw= optical density negative control samples.
ODNC= optical density of negative control samples after background subtraction.
Positive Control (PC):
· Calculate the blank corrected value: ODPC= ODPCraw– ODblank.
· The OD mean per PC tissue was calculated.
· The viability per tissue was calculated: %PC = [ODPC/ mean ODNC] x 100.
· The mean viability for all tissues was calculated: Mean PC = Σ %PC / number of tissues.
· The standard deviation (SD), standard error of the meanthe mean (SEM) and the percent coefficient of variation (% CV) was calculated.
ODPCraw= optical density positive control samples.
ODPC= optical density of positive control samples after background subtraction.
Tested Articles:
· Calculate the blank corrected value ODTT= ODTTraw– ODblank.
· The OD mean per tissue is calculated.
· The viability per tissue is calculated: %TT = [ODTT/ mean ODNC] x 100.
· The mean viability for all tissues is calculated: Mean TT = Σ %TT / number of tissues.
· The standard deviation (SD) and the percent coefficient of variation (% CV)for the controls and the test articles will be calculated.
ODTTraw= optical density test article samples.
ODPC= optical density of test article samples after background subtraction.
Data Correction Procedure for MTT Interfering Compounds
True viability = Viability of treated tissue – Interference from test article = ODtvt – ODkt where ODkt =
(mean ODtkt – mean ODukt).
ODtvt = optical density of treated viable tissue
ODkt = optical density of killed tissues
ODtkt = optical density of treated killed tissue
ODukt = optical density of untreated killed tissue (NC treated tissue)
Data Correction Procedure for Colored Compounds
True viability = Viability of treated tissue incubated in MTT media – Viability of treated tissue incubated in
media without MTT = ODtvt – ODvt.
ODtvt = optical density of treated viable tissue incubated in MTT media
ODvt = optical density of viable tissues incubated in media alone.
Proposed Statistical methods
The mean, standard deviation (SD) and the percent coefficient of variation (% CV) for the controls and the test article will be calculated.
- Evaluation of data
The results of the assay was evaluated and compared to negative control.
Table: Irritancy Prediction
In VitroResults In VivoPrediction
Mean tissue viability ≤60% Irritant (I) – Category 1 or 2
Mean tissue viability >60% Non-irritant (NI) – No Category
- Assay quality controls
- Negative Controls (NC)
The assay is meeting the acceptance criterion if the mean viability of the NC in terms of Optical Density(OD570) of the NC tissues (treated with sterile ultrapure water) in the MTT assay are >0.8 to <2.5. This is an indicator of tissue viability following shipping and conditions under use.
- Positive Controls (PC)
Methyl acetate was used as a PC and tested concurrently with the test article. The assay is meeting the acceptance criteria if the viability of the PC is <50% of the negative control.
- Standard Deviation (SD)
Each test of ocular irritancy potential is predicted from the mean viability determined on 2 single tissues. The assay meets the acceptance criteria if SD calculated from individual percent tissue viabilities of the
replicates is <18% for three replicate tissues.
Irritation parameter:
other: mean % tissue viability
Run / experiment:
Run 1
Value:
97.9
Vehicle controls validity:
not specified
Negative controls validity:
valid
Positive controls validity:
valid
Remarks on result:
other: mean of OD :1.746;Non-irritant
Other effects / acceptance of results:
The MTT data show the assay quality controls were met.

The analysis contains the results of so called corrected adsorbance since the colors themselves disturbed the MTT salt. Thus, a test with only the colored chemicals were conducted without adding the MTT salt during the MTT analysis. Hence, the results presented here are the corrected result (i.e. the results from the assay with MTT minus the results from the assay without MTT) and shows the true, corrected MTT analysis without the effect of the chemical absorbance included for test chemical.

Code N° Tissue  Raw data Blank corrected data mean of OD % of viability
  n Aliq. 1 Aliq. 2 Aliq. 1 Aliq. 2
NC 1 1.9808 1.8063 1.945 1.771 1.858 104.2
  2 1.7925 1.6983 1.757 1.663 1.710 95.8
PC 1 0.7501 0.729 0.714 0.693 0.704 39.5
  2 0.6458 0.6338 0.610 0.598 0.604 33.9
68583-95-9 1 1.6773 1.6332 1.642 1.598 1.620 90.8
  2 1.9469 1.8704 1.911 1.835 1.873 105.0

  mean Dif. mean of Dif. Dif./2 Classification
  of OD of OD viabilities [%] of viabilities      
NC 1.784 0.148 100.0 8.31 4.15 NI qualified
PC 0.654 0.100 36.7 5.59 2.80 I qualified
68583-95-9 1.746 0.253 97.9 14.21 7.10 NI qualified
Interpretation of results:
other: not irritating
Conclusions:
The ocular irritation potential of test article was determined according to the OECD 492 test guideline followed for this study. The mean of OD for test chemical was determined to be 1.746. The mean % tissue viability of test chemical was determined to be 97.9%. Thus, test chemical was considered to be not irritating to the human eyes.
Executive summary:

The ocular irritation potential of test article was determined according to the OECD 492 test guideline for this study. The MatTek EpiOcular™ model was used to assess the potential ocular irritation of the test articles by determining the viability of the tissues following exposure to the test article via MTT. Tissues were exposed to liquid test articles and controls for ~30 minutes, followed by a ~12 minute post-soak and approximately 2 hour recovery after the post-soak. The viability of each tissue was determined by MTT assay.

The analysis contains the results of so called corrected adsorbance since the colors themselves disturbed the MTT salt. Thus, a test with only the colored chemicals was conducted without adding the MTT salt during the MTT analysis. Hence, the results presented here are the corrected result (i.e. the results from the assay with MTT minus the results from the assay without MTT) and shows the true, corrected MTT analysis without the effect of the chemical absorbance included for test chemical.

The MTT data show the assay quality controls were met, passing the acceptance criteria.

The mean of OD for test chemical was determined to be 1.746.The mean % tissue viability of test chemical was determined to be 97.9%. Hence, under the experimental test conditions it was concluded that test chemical was considered to be not irritating to the human eyes.

Endpoint conclusion
Endpoint conclusion:
no adverse effect observed (not irritating)

Respiratory irritation

Endpoint conclusion
Endpoint conclusion:
no study available

Additional information

Skin Irritation

A study was designed and conducted to determine the acute dermal toxicity profile of the test chemical in Sprague Dawley rats. The test chemical was applied to shorn skin of 5 male and 5 female animals at 2000 mg/kg body weight.

The animals were kept in their cages for at least 5 days prior to administration for acclimatization to the laboratory condition and after acclimatization period, animals were randomly selected. Approximately 24 hours before application, the hair of each rat was closely clipped from the trunk (dorsal surface and sides from scapular to pelvic area) with an electric clipper, so as to expose at least 10% of the body surface area. The test item was applied directly onto the exposed skin of the animal, taking care to spread the test item evenly over the entire area of approximately 10% of the total body surface area or as much of the area as can reasonably be covered. The test item was held in contact with the skin using a porous gauze dressing and non irritating tape around the animal to cover the exposure site for first 24 hours exposure period. Elizabethan collar was placed on each animal for first 24 hours after application of the test item. These collars prevent ingestion of test item. Following 24 hours of exposure, the wrapping was removed and the test site wiped free of excess test item. Distilled water was used to remove residual test item.

Administration of the test item at 2000 mg/kg did not result in any skin reaction at the site of application during the study period of 14 days. The overall irritation score of the substance was obtained to be 0 and no erythema and edema (skin irritation) were observed at the end of 14 days observation period after patch removal. Hence, it was concluded that the test chemical was non-Irritating to the skin of rats under the experimental conditions tested.

Eye Irritation

Various studies have been reviewed to determine the level of ocular damage/corrosion caused by the test chemical in living organisms. These include in vivo as well as in vitro experimental studies for the test chemical.

The ocular irritation potential of test article was determined according to the OECD 492 test guideline for this study. The MatTek EpiOcular™ model was used to assess the potential ocular irritation of the test articles by determining the viability of the tissues following exposure to the test article via MTT. Tissues were exposed to liquid test articles and controls for ~30 minutes, followed by a ~12 minute post-soak and approximately 2 hour recovery after the post-soak. The viability of each tissue was determined by MTT assay.

 

The analysis contains the results of so called corrected adsorbance since the colors themselves disturbed the MTT salt. Thus, a test with only the colored chemicals was conducted without adding the MTT salt during the MTT analysis. Hence, the results presented here are the corrected result (i.e. the results from the assay with MTT minus the results from the assay without MTT) and shows the true, corrected MTT analysis without the effect of the chemical absorbance included for test chemical.

The MTT data show the assay quality controls were met, passing the acceptance criteria.

The mean of OD for test chemical was determined to be 1.746.The mean % tissue viability of test chemical was determined to be 97.9%. Hence, under the experimental test conditions it was concluded that test chemical was considered to be not irritating to the human eyes.

The in vitro result is supported by an in vivo ocular irritation study carried out to assess the irritation potential of the test chemical.0.1 ml of 1.0% aqueous solution of the test chemical was instilled into the rabbit eyes and the effects were observed (duration not specified).0.1 ml of 1.0% aqueous solution of the test chemical did not any changes in rabbit eyes. Hence, the test chemical can be considered not irritating to rabbit eyes.

The above results are further supported an OECD 405 study performed on New Zealand white rabbits to assess the irritation parameter of Test chemical. Three female New Zealand White rabbits were used for the study. 0.1g of the undiluted test chemical was instilled in the conjunctival sac of rabbits after gently pulling the lower lid away from the eyeball. The other eye which remained untreated served as a control. The ocular lesions were evaluated at 1, 24, 48 and 72 hours after the treatment. The grades of ocular reactions (conjunctiva, cornea and iris) were recorded at each observation. To determine the reversibility of the effect the animals were observed normally for 21 days. Any other lesions in the eye viz pannus, staining were observed and scored accordingly. Examination of reactions was facilitated by use of biomicroscope and hand slit lamp. Individual animal weights before and during the study was observed.

The overall irritation index of Test chemical was 0.0 after 72 hours.

Also Test chemical did not produce any clinical signs of toxicity throughout the examination period of 21 days.

Hence, under the test conditions, the Test chemical can be concluded to be not irritating to New Zealand White rabbit eyes.

Based on the available in vitro and in vivo results for the test chemicals, the test chemical can be considered to be not irritating to eyes. It can be further classified under the category “Not Classified” as per CLP Regulation.

Justification for classification or non-classification

Based on the available results, the test chemical indeed lacks the potential to cause any irritation to skin and eyes. Hence, the test chemical can be considered to be not irritating to eyes and skin. It can be classified under the category “Not Classified” as per CLP Regulation.