Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Environmental fate & pathways

Biodegradation in water: screening tests

Currently viewing:

Administrative data

Link to relevant study record(s)

Reference
Endpoint:
biodegradation in water: ready biodegradability
Type of information:
calculation (if not (Q)SAR)
Adequacy of study:
weight of evidence
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
accepted calculation method
Justification for type of information:
Data is from computational model developed by USEPA
Qualifier:
according to guideline
Guideline:
other: Modeling database
Principles of method if other than guideline:
The Biodegradation Probability Program (BIOWIN) estimates the probability for the rapid aerobic biodegradation of an organic chemical in the presence of mixed populations of environmental microorganisms .The model is part of the EpiSuite program of the US-EPA. Estimations are made with BIOWIN version 4.10. Estimates are based upon fragment constants that were developed using multiple linear and non-linear regression analyses. Experimental biodegradation data for the multiple linear and non-linear regressions were obtained from Syracuse Research Corporation's (SRC) data base of evaluated biodegradation data (Howard et. al., 1987). This version (v4.10) designates the models as follows (see also Boethling et al. 2003):Biowin1 = linear probability modelBiowin2 = nonlinear probability modelBiowin3 = expert survey ultimate biodegradation modelBiowin4 = expert survey primary biodegradation modelBiowin5 = MITI linear modelBiowin6 = MITI nonlinear modelBiowin7 = anaerobic biodegradation model
GLP compliance:
not specified
Specific details on test material used for the study:
- Name of test material: barium 3-hydroxy-4-[(4-methyl-2-sulfonatophenyl)diazenyl]-2-naphthoate- Molecular formula: C18H14N2O6S.Ba- Molecular weight: 521.697 g/mol- Smiles notation: [Ba+2].c1c(c(c(c2ccccc12)\N=N\c1c(cc(cc1)C)S(=O)(=O)[O-])O)C(=O)[O-]- InChl: 1S/C18H14N2O6S.Ba/c1-10-6-7-14(15(8-10)27(24,25)26)19-20-16-12-5-3-2-4-11(12)9-13(17(16)21)18(22)23;/h2-9,21H,1H3,(H,22,23)(H,24,25,26);/q;+2/p-2/b20-19+;- Substance type: Organic
Oxygen conditions:
other: aerobic (Biowin 1-6) and anaerobic (Biowin 7)
Inoculum or test system:
other: mixed populations of environmental microorganisms
Details on study design:
Using the computer tool BIOWIN v4.10 by US-EPA (EPIWIN) the aerobic as well as the anaerobic biodegradability of the test material can be estimated. The follwoing seven different models are used by the tool: Linear Model, Non-Linear Model, Ultimate Biodegradation Timeframe, Primary Biodegradation Timeframe, MITI LInear Model, MITI Non-Linear Model and Anaerobic Model (calles Biowin 1-7, respectively). Due to this results the overall prediction of readily biodegradability is done for the desired chemical.Biowin 1 and 2, are intended to convey a general indication of biodegradability under aerobic conditions, and not for any particular medium. Biowin 1 (Linear model)The fast biodegradation probability for any compound is calculated by summing, for all the fragments present in that compound, the fragment coefficient multiplied by the number of instances of the fragment in the compound (for MW, the value of that parameter is multiplied by its coefficient), and then adding this summation to the equation constant which is 0.7475. The summed values for each fragment coefficient multiplied by the number of instances appear in the "VALUE" column of the linear results screen. Biowin 2 (Non-linear model)Calculation of the fast biodegradation probability for any compound begins by summing, for all the fragments present in that compound, the fragment coefficient multiplied by the number of instances of the fragment in the compound (for MW, the value of that parameter is multiplied by its coefficient), then adding this summation to the equation constant which is 3.0087. The summed values for each fragment coefficient multiplied by the number of instances appear in the "VALUE" column of the non-linear results screen. The non-linear fast biodegradation probability is then calculated from the logistic equation as follows, where total = 3.0087 + the summation as described above:Biowin 3 and 4 yield estimates for the time required to achieve complete ultimate and primary biodegradation in a typical or "evaluative" aquatic environment.Biowin 5 and 6 are predictive models for assessing a compound’s biodegradability in the Japanese MITI (Ministry of International Trade and Industry) ready biodegradation test; i.e. OECD 301C. These models use an approach similar to that used to develop Biowin1 and 2. This protocol for determining ready biodegradability is among six officially approved as ready biodegradability test guidelines of the OECD (Organization for Economic Cooperation and Development). A total dataset of 884 chemicals was compiled to derive the fragment probability values that are applied in this MITI Biodegradability method. The dataset consists of 385 chemical that were critically evaluated as "readily degradable" and 499 chemicals that were critically evaluated as "not readily biodegradable". Biowin 7, the anaerobic biodegradation model, is the most recent. As for the other Biowin models, multiple (linear) regression against molecular fragments was used to develop the model, which predicts probability of rapid degradation in the "serum bottle" anaerobic biodegradation screening test. This endpoint is assumed to be predictive of degradation in a typical anaerobic digester. Biowin7 estimates the probability of fast biodegradation under methanogenic anaerobic conditions; specifically, under the conditions of the "serum bottle" anaerobic biodegradation screening test (Meylan et al. 2007). A total of 169 compounds with serum bottle test data were identified for use in model development. Out of seven different Biowin models, Biowin model 3 and 4 will help in estimating biodgeradability of the test chemical which was described as below-Ultimate Biodegradation Timeframe and Primary Biodegradation Timeframe (Biowin 3 and 4)These two models estimate the time required for "complete" ultimate and primary biodegradation.  Primary biodegradation is the transformation of a parent compound to an initial metabolite.  Ultimate biodegradation is the transformation of a parent compound to carbon dioxide and water, mineral oxides of any other elements present in the test compound, and new cell material. Then the rating was given to each model, which indicates the time required to achieve ultimate and primary biodegradation in a typical or "evaluative" aquatic environment. The ratings for each compound were averaged to obtain a single value for modeling.  The ultimate or primary rating of a compound is calculated by summing, for all the fragments present in that compound.
Key result
Remarks on result:
other: not readily biodegradable as estimated by BIOWIN model
Validity criteria fulfilled:
not specified
Interpretation of results:
not readily biodegradable
Conclusions:
The biodegradability of the substance was calculated using seven different Biowin 1-7 models of the BIOWIN v4.10 software. The results indicate that the test chemical barium 3-hydroxy-4-[(4-methyl-2-sulfonatophenyl)diazenyl]-2-naphthoate is expected to be not readily biodegradable.
Executive summary:

Estimation Programs Interface Suite was run to predict the biodegradation potential of the test compound barium 3 -hydroxy-4 -[(4 -methyl-2 -sulfonatophenyl)diazenyl]-2 -naphthoate (CAS no. 17852 -98 -1) in the presence of mixed populations of environmental microorganisms. The biodegradability of the substance was calculated using seven different models such as Linear Model, Non-Linear Model, Ultimate Biodegradation Timeframe, Primary Biodegradation Timeframe, MITI Linear Model, MITI Non-Linear Model and Anaerobic Model (called as Biowin 1-7, respectively) of the BIOWIN v4.10 software. The results indicate that chemical barium 3 -hydroxy-4 -[(4 -methyl-2 -sulfonatophenyl) diazenyl]-2 -naphthoate is expected to be not readily biodegradable.

Description of key information

Estimation Programs Interface Suite was run to predict the biodegradation potential of the test compound barium 3 -hydroxy-4 -[(4 -methyl-2 -sulfonatophenyl)diazenyl]-2 -naphthoate (CAS no. 17852 -98 -1) in the presence of mixed populations of environmental microorganisms. The biodegradability of the substance was calculated using seven different models such as Linear Model, Non-Linear Model, Ultimate Biodegradation Timeframe, Primary Biodegradation Timeframe, MITI Linear Model, MITI Non-Linear Model and Anaerobic Model (called as Biowin 1-7, respectively) of the BIOWIN v4.10 software. The results indicate that chemical barium 3 -hydroxy-4 -[(4 -methyl-2 -sulfonatophenyl) diazenyl]-2 -naphthoate is expected to be not readily biodegradable.

Key value for chemical safety assessment

Biodegradation in water:
under test conditions no biodegradation observed

Additional information

Predicted data for the target compound barium 3-hydroxy-4-[(4-methyl-2-sulfonatophenyl)diazenyl]-2-naphthoate (CAS No. 17852-98-1) and supporting weight of evidence studies for its structurally and functionally similar read across substance were reviewed for the biodegradation end point which are summarized as below:

 

In a prediction using the Estimation Programs Interface Suite (EPI suite, 2017), the biodegradation potential of the test compoundbarium 3-hydroxy-4-[(4-methyl-2-sulfonatophenyl)diazenyl]-2-naphthoate(CAS No. 17852-98-1) in the presence of mixed populations of environmental microorganisms was estimated.

 

In a supporting weight of evidence study from study report (2016) for the test chemical, 28-days Manometric respirometry testfollowing the OECD guideline 301Fto determine the ready biodegradability of the test item. The test system included control, test item and reference item. The concentration of test and reference item ( Sodium Benzoate) chosen for both the study was 30 mg/L, while that of inoculum was 10 ml/l. ThOD (Theoretical oxygen demand) of test and reference item was determined by calculation. % Degradation was calculated using the values of BOD and ThOD for test item and reference item. The BOD28 value of test chemical was observed to be mgO2sup>/mg. ThOD was calculated as mgO2/mg. Accordingly, the % degradation of the test item after 28 days of incubation at 20 ± 1°C according to manometric respirometry test was determined to be 12.807 %.Based on the results, the test item, under the test conditions, was considered to be not readily biodegradable at 20± 1°C over a period of 28 days.

 

Another biodegradation study of 28-days Closed Bottle test following the OECD guideline 301D was conducted for determining the ready biodegradability of the test chemical (Experimental study report, 2017). The test system included control, test item and reference item. The concentration of test and reference item (Sodium Benzoate) chosen for the study was 32 mg/l and 32mg/l, while that of inoculum was 32ml/l. ThOD (Theoretical oxygen demand) of test and reference item was determined by calculation. % Degradation was calculated using the values of BOD and ThOD for test item and reference item. The BOD28value of test substance was observed to be 0.475mgO2/mg. ThOD was calculated as 1.465 mgO2/mg. Accordingly, the % degradation of the test item after 28 days of incubation at 20 ± 1°C according to Closed Bottle test was determined to be 32.42%. Based on the results, the test item, under the test conditions, was considered to be not readily biodegradable at 20 ± 1°C over a period of 28 days.

 

For the test chemical from peer reviewed journal (Yasuhide TONOGAI et. al., 1978), Biodegradation study was conducted under aerobic conditions for evaluating the percentage biodegradability of test substance. Activated sludge was used as a test inoculumobtained from the municipal sewage treatment plant, Nakahama, Osaka.The return sludge was acclimated to the synthetic sewage for a week or longer, and it was used for the aerobic and anaerobic decomposition experiments.Synthetic sewage was prepared by dissolving Glucose, peptone and potassium dihydrogen phosphate, 30g each, in 1 liter water and the pH was adjusted to pH 7.0 with sodium hydroxide. Concentration of inoculum used for the study was3000 mg/l. Percentage degradation of chemical was determined by measuring the absorbance (test material analysis), oxygen uptake and BOD parameter. For theaerobic decomposition of dyes with sludge, 250 ml of O.03 M dye solution was added to 750ml of sludge (MLSS ca, 3,000 ppm), and bubbled with air sufficiently at 20°C. 5ml sample was taken out once a day. After sampling 5ml of synthetic sewage was added to the mixture. Each sample was filtered through filter paper and diluted twenty times prior to the spectrophotometric measurement at the absorption maximum within the visible range. The decrease of dyes concentration was expressed in terms of percent to the initial absorption whereas measurement oxygen uptake by sludge involve 2.0 ml of sludge, 0.2 ml of 1,000 ppm dye solution, and O.2 ml of 20% potassium hydroxide were pipetted into the vessel, the side arm and central well, respectively. The sludge and the dye solution were mixed and the vessel was shaken at 25"C. The oxygen uptake was measured. The oxygen uptake by sludge alone was subtracted from the the by dye addition. For determining the BOD values, test chemical solutions (10, 20 and 40 ppm) were prepared with the seeded dilution water and kept at 20°C. The dissolved oxygen contents were then measured by using a dissolved oxygen meter.The percentage degradation of test chemical was determined to be 20% in 10 days by using the test material analysis parameter. From the oxygen uptake by Warburg’s manometer, the low activity of the sludge to dye was obtained and by using the dissolved oxygen meter, the dissolved oxygen contents on the 5th day were essentially the same to initial ones. Thus, based on percentage degradation, test chemical was considered to be not readily biodegradable in nature.

 

On the basis of above overall results for target chemical barium 3-hydroxy-4-[(4-methyl-2-sulfonatophenyl)diazenyl]-2-naphthoate (from modelling database,2017), it can be concluded that the test substance barium 3-hydroxy-4-[(4-methyl-2-sulfonatophenyl)diazenyl]-2-naphthoate can be considered to be not readily biodegradable in nature.