Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Administrative data

Key value for chemical safety assessment

Genetic toxicity in vitro

Description of key information

Prediction done using the OECD QSAR toolbox version 3.4 with log kow as the primary descriptor and considering the five closest read across substances, gene mutation was predicted for 2-[(4-amino-3-methoxyphenyl)sulphonyl]ethyl hydrogen sulphate (26672-22-0). The study assumed the use of Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 with and without S9 metabolic activation system. 2-[(4-amino-3-methoxyphenyl)sulphonyl]ethyl hydrogen sulphate was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence and absence of S9 metabolic activation system and hence, according to the prediction made, it is not likely to classify as a gene mutant in vitro

Link to relevant study records
Reference
Endpoint:
in vitro gene mutation study in bacteria
Type of information:
(Q)SAR
Adequacy of study:
weight of evidence
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
results derived from a valid (Q)SAR model and falling into its applicability domain, with limited documentation / justification
Justification for type of information:
Data is from OECD QSAR Toolbox version 3.4 and the supporting QMRF report has been attached
Qualifier:
according to guideline
Guideline:
other: As mention below
Principles of method if other than guideline:
Prediction is done using OECD QSAR Toolbox version 3.4, 2017
GLP compliance:
not specified
Type of assay:
bacterial reverse mutation assay
Specific details on test material used for the study:
- Name of test material : 2-[(4-amino-3-methoxyphenyl)sulphonyl]ethyl hydrogen sulphate
- Molecular formula : C9H13NO7S2
- Molecular weight : 311.3337 g/mol
- Smiles notation : COC1=C(C=CC(=C1)S(=O)(=O)CCOS(=O)(=O)O)N
- InChl : 1S/C9H13NO7S2/c1-16-9-6-7(2-3-8(9)10)18(11,12)5-4-17-19(13,14)15/h2-3,6H,4-5,10H2,1H3,(H,13,14,15)
- Substance type : Organic
- Physical state : Solid
Target gene:
Histidine
Species / strain / cell type:
S. typhimurium TA 1535, TA 1537, TA 98, TA 100 and TA 102
Details on mammalian cell type (if applicable):
Not applicable
Additional strain / cell type characteristics:
not specified
Cytokinesis block (if used):
not specified
Metabolic activation:
with
Metabolic activation system:
S9 metabolic activation
Test concentrations with justification for top dose:
not specified
Vehicle / solvent:
not specified
Untreated negative controls:
not specified
Negative solvent / vehicle controls:
not specified
True negative controls:
not specified
Positive controls:
not specified
Details on test system and experimental conditions:
not specified
Rationale for test conditions:
not specified
Evaluation criteria:
Prediction is done considering a dose dependent increase in the number of revrtants/plate
Statistics:
not specified
Species / strain:
S. typhimurium, other: TA 1535, TA 1537, TA 98, TA 100 and TA 102
Metabolic activation:
without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
not specified
Vehicle controls validity:
not specified
Untreated negative controls validity:
not specified
Positive controls validity:
not specified
Additional information on results:
not specified
Remarks on result:
other: No mutagenic effect were observed

The prediction was based on dataset comprised from the following descriptors: "Gene mutation"
Estimation method: Takes highest mode value from the 6 nearest neighbours
Domain  logical expression:Result: In Domain

(((((((((("a" or "b" or "c" or "d" or "e" or "f" )  and ("g" and ( not "h") )  )  and ("i" and ( not "j") )  )  and ("k" and ( not "l") )  )  and ("m" and ( not "n") )  )  and "o" )  and "p" )  and ("q" and ( not "r") )  )  and ("s" and ( not "t") )  )  and ("u" and "v" )  )

Domain logical expression index: "a"

Referential boundary: The target chemical should be classified as Anilines (Acute toxicity) AND Vinyl Sulfones by US-EPA New Chemical Categories

Domain logical expression index: "b"

Referential boundary: The target chemical should be classified as Radical AND Radical >> Radical mechanism via ROS formation (indirect) AND Radical >> Radical mechanism via ROS formation (indirect) >> Single-Ring Substituted Primary Aromatic Amines AND SN1 AND SN1 >> Nucleophilic attack after nitrenium ion formation AND SN1 >> Nucleophilic attack after nitrenium ion formation >> Single-Ring Substituted Primary Aromatic Amines by DNA binding by OASIS v.1.4

Domain logical expression index: "c"

Referential boundary: The target chemical should be classified as SN1 AND SN1 >> Nitrenium Ion formation AND SN1 >> Nitrenium Ion formation >> Primary aromatic amine by DNA binding by OECD

Domain logical expression index: "d"

Referential boundary: The target chemical should be classified as Strong binder, NH2 group by Estrogen Receptor Binding

Domain logical expression index: "e"

Referential boundary: The target chemical should be classified as AN2 AND AN2 >> Michael-type addition to quinoid structures  AND AN2 >> Michael-type addition to quinoid structures  >> Substituted Anilines by Protein binding by OASIS v1.4

Domain logical expression index: "f"

Referential boundary: The target chemical should be classified as Anilines (Unhindered) by Aquatic toxicity classification by ECOSAR

Domain logical expression index: "g"

Referential boundary: The target chemical should be classified as SN1 AND SN1 >> Nitrenium Ion formation AND SN1 >> Nitrenium Ion formation >> Primary aromatic amine by DNA binding by OECD

Domain logical expression index: "h"

Referential boundary: The target chemical should be classified as Michael addition OR Michael addition >> P450 Mediated Activation of Heterocyclic Ring Systems OR Michael addition >> P450 Mediated Activation of Heterocyclic Ring Systems >> Furans OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals >> Alkyl phenols OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals >> Arenes OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals >> Hydroquinones OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals >> Polycyclic (PAHs) and heterocyclic (HACs) aromatic hydrocarbons-Michael addition OR Michael addition >> Polarised Alkenes-Michael addition OR Michael addition >> Polarised Alkenes-Michael addition >> Alpha, beta- unsaturated ketones OR Michael addition >> Quinones and Quinone-type Chemicals OR Michael addition >> Quinones and Quinone-type Chemicals >> Quinones OR No alert found OR SN1 >> Carbenium Ion Formation OR SN1 >> Carbenium Ion Formation >> Hydrazine OR SN1 >> Carbenium Ion Formation >> Polycyclic (PAHs) and heterocyclic (HACs) aromatic hydrocarbons-SN1 OR SN1 >> Iminium Ion Formation OR SN1 >> Iminium Ion Formation >> Aliphatic tertiary amines OR SN1 >> Nitrenium Ion formation >> Aromatic azo OR SN1 >> Nitrenium Ion formation >> Aromatic nitro OR SN1 >> Nitrenium Ion formation >> Primary (unsaturated) heterocyclic amine OR SN1 >> Nitrenium Ion formation >> Secondary aromatic amine OR SN1 >> Nitrenium Ion formation >> Tertiary aromatic amine OR SN1 >> Nitrenium Ion formation >> Unsaturated heterocyclic nitro by DNA binding by OECD

Domain logical expression index: "i"

Referential boundary: The target chemical should be classified as Strong binder, NH2 group by Estrogen Receptor Binding

Domain logical expression index: "j"

Referential boundary: The target chemical should be classified as Moderate binder, NH2 group OR Moderate binder, OH grooup OR Non binder, impaired OH or NH2 group OR Non binder, MW>500 OR Strong binder, OH group OR Very strong binder, OH group OR Weak binder, NH2 group OR Weak binder, OH group by Estrogen Receptor Binding

Domain logical expression index: "k"

Referential boundary: The target chemical should be classified as AN2 AND AN2 >> Michael-type addition to quinoid structures  AND AN2 >> Michael-type addition to quinoid structures  >> Substituted Anilines by Protein binding by OASIS v1.4

Domain logical expression index: "l"

Referential boundary: The target chemical should be classified as Acylation OR Acylation >> Acylation involving an activated (glucuronidated) carboxamide group OR Acylation >> Acylation involving an activated (glucuronidated) carboxamide group >> Carboxylic Acid Amides OR Acylation >> Acylation involving an activated (glucuronidated) ester group OR Acylation >> Acylation involving an activated (glucuronidated) ester group >> Arenecarboxylic Acid Esters OR Acylation >> Acylation involving an activated (glucuronidated) sulfonamide group OR Acylation >> Acylation involving an activated (glucuronidated) sulfonamide group >> Arenesulfonamides OR Acylation >> Direct acylation involving a leaving group OR Acylation >> Direct acylation involving a leaving group >> Carboxylic Acid Amides OR Acylation >> Direct acylation involving a leaving group >> N-Carbonylsulfonamides OR Acylation >> Ester aminolysis OR Acylation >> Ester aminolysis >> Amides OR AN2 >> Michael addition to activated double bonds OR AN2 >> Michael addition to activated double bonds >> alpha,beta-Unsaturated Carbonyls and Related Compounds OR AN2 >> Michael-type addition to quinoid structures  >> Carboxylic Acid Amides OR AN2 >> Michael-type addition to quinoid structures  >> N-Substituted Aromatic Amines OR AN2 >> Nucleophilic addition at polarized N-functional double bond OR AN2 >> Nucleophilic addition at polarized N-functional double bond >> Arenesulfonamides OR AN2 >> Nucleophilic addition to pyridonimine tautomer of aminopyridoindoles or aminopyridoimidazoles (hypothesized) OR AN2 >> Nucleophilic addition to pyridonimine tautomer of aminopyridoindoles or aminopyridoimidazoles (hypothesized) >> Heterocyclic Aromatic Amines OR Michael addition OR Michael addition >> Michael addition on conjugated systems with electron withdrawing group OR Michael addition >> Michael addition on conjugated systems with electron withdrawing group >> Activated electrophilic ethenylarenes  OR Radical reactions OR Radical reactions >> ROS generation and direct attack of hydroxyl radical to the C8 position of nucleoside base OR Radical reactions >> ROS generation and direct attack of hydroxyl radical to the C8 position of nucleoside base >> Heterocyclic Aromatic Amines OR SE reaction (CYP450-activated heterocyclic amines) OR SE reaction (CYP450-activated heterocyclic amines) >> Direct attack of arylnitrenium cation to the C8 position of nucleoside base  OR SE reaction (CYP450-activated heterocyclic amines) >> Direct attack of arylnitrenium cation to the C8 position of nucleoside base  >> Heterocyclic Aromatic Amines OR SN2 OR SN2 >> Nucleophilic substitution at sp3 carbon atom OR SN2 >> Nucleophilic substitution at sp3 carbon atom >> (Thio)Phosphates  OR SN2 >> SN2 Reaction at a sp3 carbon atom OR SN2 >> SN2 Reaction at a sp3 carbon atom >> Activated alkyl esters and thioesters  OR SR reaction (peroxidase-activated heterocyclic amines) OR SR reaction (peroxidase-activated heterocyclic amines) >> Direct attack of arylnitrenium radical to the C8 position of nucleoside base OR SR reaction (peroxidase-activated heterocyclic amines) >> Direct attack of arylnitrenium radical to the C8 position of nucleoside base >> Heterocyclic Aromatic Amines by Protein binding by OASIS v1.4

Domain logical expression index: "m"

Referential boundary: The target chemical should be classified as No alert found by DNA alerts for AMES by OASIS v.1.4

Domain logical expression index: "n"

Referential boundary: The target chemical should be classified as AN2 OR AN2 >>  Michael-type addition, quinoid structures OR AN2 >>  Michael-type addition, quinoid structures >> Quinoneimines OR Non-covalent interaction OR Non-covalent interaction >> DNA intercalation OR Non-covalent interaction >> DNA intercalation >> Fused-Ring Nitroaromatics OR Non-covalent interaction >> DNA intercalation >> Fused-Ring Primary Aromatic Amines OR Radical OR Radical >> Radical mechanism via ROS formation (indirect) OR Radical >> Radical mechanism via ROS formation (indirect) >> Fused-Ring Nitroaromatics OR Radical >> Radical mechanism via ROS formation (indirect) >> Fused-Ring Primary Aromatic Amines OR Radical >> Radical mechanism via ROS formation (indirect) >> p-Aminobiphenyl Analogs OR Radical >> ROS formation after GSH depletion (indirect) OR Radical >> ROS formation after GSH depletion (indirect) >> Quinoneimines OR SN1 OR SN1 >> Nucleophilic attack after metabolic nitrenium ion formation OR SN1 >> Nucleophilic attack after metabolic nitrenium ion formation >> Fused-Ring Primary Aromatic Amines OR SN1 >> Nucleophilic attack after nitrenium ion formation OR SN1 >> Nucleophilic attack after nitrenium ion formation >> p-Aminobiphenyl Analogs OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Fused-Ring Nitroaromatics by DNA alerts for AMES by OASIS v.1.4

Domain logical expression index: "o"

Referential boundary: The target chemical should be classified as Bioavailable by Lipinski Rule Oasis ONLY

Domain logical expression index: "p"

Referential boundary: The target chemical should be classified as Not calculated by Hydrolysis half-life (Kb, pH 7)(Hydrowin) ONLY

Domain logical expression index: "q"

Referential boundary: The target chemical should be classified as Radical AND Radical >> Radical mechanism via ROS formation (indirect) AND Radical >> Radical mechanism via ROS formation (indirect) >> Single-Ring Substituted Primary Aromatic Amines AND SN1 AND SN1 >> Nucleophilic attack after nitrenium ion formation AND SN1 >> Nucleophilic attack after nitrenium ion formation >> Single-Ring Substituted Primary Aromatic Amines by DNA binding by OASIS v.1.4

Domain logical expression index: "r"

Referential boundary: The target chemical should be classified as SN1 >> Nucleophilic attack after nitrenium ion formation >> p-Aminobiphenyl Analogs by DNA binding by OASIS v.1.4

Domain logical expression index: "s"

Referential boundary: The target chemical should be classified as Radical AND Radical >> Radical mechanism via ROS formation (indirect) AND Radical >> Radical mechanism via ROS formation (indirect) >> Single-Ring Substituted Primary Aromatic Amines AND SN1 AND SN1 >> Nucleophilic attack after nitrenium ion formation AND SN1 >> Nucleophilic attack after nitrenium ion formation >> Single-Ring Substituted Primary Aromatic Amines by DNA binding by OASIS v.1.4

Domain logical expression index: "t"

Referential boundary: The target chemical should be classified as SN1 >> Nucleophilic attack after metabolic nitrenium ion formation >> Amino Anthraquinones by DNA binding by OASIS v.1.4

Domain logical expression index: "u"

Parametric boundary:The target chemical should have a value of log Kow which is >= -5.34

Domain logical expression index: "v"

Parametric boundary:The target chemical should have a value of log Kow which is <= -2.09

Conclusions:
2-[(4-amino-3-methoxyphenyl)sulphonyl]ethyl hydrogen sulphate (26672-22-0) was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence of S9 metabolic activation system and hence, according to the prediction made, it is not likely to classify as a gene mutant in vitro.
Executive summary:

Based on the prediction done using the OECD QSAR toolbox version 3.4 with log kow as the primary descriptor and considering the five closest read across substances, gene mutation was predicted for2-[(4-amino-3-methoxyphenyl)sulphonyl]ethyl hydrogen sulphate (26672-22-0). The study assumed the use of Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 with S9 metabolic activation system. 2-[(4-amino-3-methoxyphenyl)sulphonyl]ethyl hydrogen sulphate was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence of S9 metabolic activation system and hence, according to the prediction made, it is not likely to classify as a gene mutant in vitro.Based on the predicted result it can be concluded that the substance is considered to not toxic as per the criteria mentioned in CLP regulation.

Endpoint conclusion
Endpoint conclusion:
no adverse effect observed (negative)

Genetic toxicity in vivo

Endpoint conclusion
Endpoint conclusion:
no study available

Additional information

Prediction model based estimation and data from read across chemical have been reviewed to determine the mutagenic nature of2-[(4-amino-3-methoxyphenyl)sulphonyl]ethyl hydrogen sulphate (26672-22-0). The studies are as mentioned below

Based on the prediction done using the OECD QSAR toolbox version 3.4 with log kow as the primary descriptor and considering the five closest read across substances, gene mutation was predicted for 2-[(4-amino-3-methoxyphenyl)sulphonyl]ethyl hydrogen sulphate (26672-22-0). The study assumed the use of Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 with and without S9 metabolic activation system. 2-[(4-amino-3-methoxyphenyl)sulphonyl]ethyl hydrogen sulphate was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence and absence of S9 metabolic activation system and hence, according to the prediction made, it is not likely to classify as a gene mutant in vitro.

Based on the predicted result it can be concluded that the substance is considered to not toxic as per the criteria mentioned in CLP regulation.

Based on the prediction done using the OECD QSAR toolbox version 3.4 with log kow as the primary descriptor and considering the five closest read across substances, chromosomal aberration was predicted for2-[(4-amino-3-methoxyphenyl)sulphonyl]ethyl hydrogen sulphate (26672-22-0) .The study assumed the use of Chinese hamster ovary (CHO) cell line with and without S9 metabolic activation system2-[(4-amino-3-methoxyphenyl)sulphonyl]ethyl hydrogen sulphate was predicted to not induce chromosomal aberrations in Chinese hamster ovary (CHO) cell line in the presence and absence of S9 metabolic activation system and hence, according to the prediction made, it is not likely to classify as a gene mutant in vitro.

Based on the predicted result it can be concluded that the substance is considered to not toxic as per the criteria mentioned in CLP regulation.

In a study for structurally and functionally similar read across chemical, Gene mutation toxicity study was performed by F. RAFII et al.( Food and Chemical Toxicology,1997) to determine the mutagenic nature of D&C Red No. 33 (RA CAS No3567-66-6; IUPAC name: disodium 5-amino-4-hydroxy-3-(phenyldiazenyl)naphthalene-2,7-disulfonate. The read across substances share high similarity in structure and log kow .Therefore, it is acceptable to derive information on mutation from the analogue substance. In a gene toxicity test, Salmonella typhimurium Strain-TA 98, TA 100 were exposed to D&C Red No. 33 in the concentration of 50 and 200 µg/plate with and without metabolic activation. In addition D&C Red No. 33 metabolites were also prepared by treating with azo reductase -producing bacteria namely Clostridium strain isolated from the human gastrointestinal tract. The results showed that there was no evidence of gene toxicity after treatment with D&C Red No. 33 in the concentration of 50 and 200 µg/plate in Salmonella typhimurium Strain-TA 98, TA 100. Independently of tested D&C Red No. 33 reduced metabolite in the concentration of 50 and 200 µg/plate showed that there was no evidence of gene toxicity. Therefore, it is considered that D&C Red No. 33 and its reduced metabolites in the concentration of 50 and 200 µg/plate do not cause genetic mutation(s) when Salmonella typhimurium Strain-TA 98, TA 100 exposed to the test chemical in the presence and absence of metabolic activation (S9).

 

In a study for structurally and functionally similar read across chemical, Gene mutation toxicity study was performed by National Institute of Technology and Evaluation (Japan chemicals collaborative knowledge database, 2017) to determine the mutagenic nature of Sodium 4-aminonaphthalene-1-sulfonate (130-13-2). The read across substances share high similarity in structure and log kow .Therefore, it is acceptable to derive information on mutation from the analogue substance. Gene toxicity in vitro study was observed for Sodium 4-aminonaphthalene-1-sulfonate (130-13-2) in Salmonella typhimurium TA100, TA1535, TA98, TA1537, Escherichia coli WP2 uvrA. The test substance was observed at the concentration of 313, 625, 1250, 2500, 5000 µg/plate in the presence and absence of metabolic activation. The test result was considered to be negative with and without metabolic activation. Therefore Sodium 4-aminonaphthalene-1-sulfonate was considered to be non mutant in vitro. Hence cannot be classified as genetox in vitro.

Based on the data available for the target chemical and its read across substance and applying weight of evidence 2-[(4-amino-3-methoxyphenyl)sulphonyl]ethyl hydrogen sulphate (26672-22-0) does not exhibit gene mutation in vitro. Hence the test chemical is not likely to classify as a gene mutant in vitro.

Justification for classification or non-classification

Thus based on the above annotation and CLP crirteria for the target chemical , 2-[(4-amino-3-methoxyphenyl)sulphonyl]ethyl hydrogen sulphate (26672-22-0) does not exhibit gene mutation in vitro. Hence the test chemical is not likely to classify as a gene mutant in vitro.