Registration Dossier

Administrative data

Key value for chemical safety assessment

Effects on fertility

Description of key information

An OECD TG 422 study is on-going on the registered substance

Link to relevant study records
Reference
Endpoint:
screening for reproductive / developmental toxicity
Type of information:
experimental study
Adequacy of study:
key study
Reliability:
1 (reliable without restriction)
Rationale for reliability incl. deficiencies:
guideline study
Reason / purpose:
reference to same study
Qualifier:
according to
Guideline:
OECD Guideline 422 (Combined Repeated Dose Toxicity Study with the Reproduction / Developmental Toxicity Screening Test)
Deviations:
no
Principles of method if other than guideline:
Not applicable
GLP compliance:
yes (incl. certificate)
Limit test:
no
Justification for study design:
- Basis for dose level selection: Dietary levels were selected following the completion of the preliminary toxicity study (Envigo Study number: ) following consultation with the Sponsor.
- Route of administration: The dietary route of administration was chosen to simulate the conditions of potential human exposure.
- Animal model: The rat was chosen as the test species because of the requirement for a rodent species by regulatory agencies. The Crl:CD(SD) was used because of the historical control data available at this laboratory.
Specific details on test material used for the study:
SOURCE OF TEST MATERIAL
- Source and lot/batch No.of test material: Biolandes / L1117/1
- Appearance: Brown-red, solid
- Expiration date of the lot/batch: November 2019

STORAGE CONDITIONS OF TEST MATERIAL
- Storage condition of test material: Desiccated, refrigerated (nominally 2-8 °C), protected from light, under nitrogen.
Species:
rat
Strain:
other: Crl:CD(SD)
Details on species / strain selection:
The rat was chosen as the test species because of the requirement for a rodent species by regulatory agencies. The Crl:CD(SD) was used because of the historical control data available at this laboratory.
Sex:
male/female
Details on test animals and environmental conditions:
TEST ANIMALS
- Source: Charles River (UK) Ltd.
- Females (if applicable) nulliparous and non-pregnant: Yes
- Age at study initiation: Males: Approximately 71 days old; Females: Approximately 85 days old.
- Weight at study initiation: Males: 339-379 g; Females: 241-302 g
- Housing: Solid (polycarbonate) bottom cages were used during the acclimatization, pre-pairing, gestation, littering and lactation periods. Grid bottomed polypropylene cages were used during pairing; Cages comprised of a polycarbonate body with a stainless steel mesh lid.
- Number of animals per cage: Pre-pairing: up to five animals of one sex; Pairing one: male and one female; Males after mating: up to five animals; Gestation: one female; Lactation: one female + litter
- Diet: SDS VRF1 Certified powdered diet, ad libitum (removed overnight before blood sampling for hematology and blood chemistry investigations and during urine collection)
- Water: Potable water from the public supply via polycarbonate bottles with sipper tubes, ad libitum (removed overnight during urine collection)
- Acclimation period: Females: six days prior to the commencement of estrous cycle evaluation; Males: six days prior to the commencement of treatment.

ENVIRONMENTAL CONDITIONS
- Temperature: 20-24 °C
- Humidity: 40-70 %
- Air changes: Filtered fresh air which was passed to atmosphere and not recirculated.
- Photoperiod: Artificial lighting, 12 h light : 12 h dark
- Environmental Enrichment
Aspen chew block: A soft white untreated wood block; provided to each cage throughout the study (except during pairing and lactation) and replaced when necessary.
Plastic shelter: Provided to each cage throughout the study (except during pairing and lactation) and replaced at the same time as the cages.

IN-LIFE DATES:
Route of administration:
oral: feed
Vehicle:
corn oil
Details on exposure:
DIET PREPARATION
- Diet: SDS VRF1 Certified powdered diet
- Correction factor: A correction factor was not required.
- Stabilizer: Corn oil (test material to corn oil ratio 5:1).
- Method of preparation: The test substance was incorporated into the diet to provide the required concentrations by initial preparation of a premix. On each occasion of the preparation of the premix, the required amount of test substance and corn oil were weighed into a suitable container. An amount of sieved diet that approximately equalled the weight of test substance was added and the mixture stirred together. A further amount of sieved diet (approximately equal to the weight of this mixture) was added and it was stirred well. This doubling up process was repeated until half of the final weight of the premix was achieved. This mixture was then ground using a mechanical grinder after which it was made up to the final weight of the premix with plain diet. This premix was mixed in a Turbula mixer for 100 cycles to ensure the test substance was dispersed in the diet. Aliquots of the premix were then diluted with further quantities of plain diet to produce the required dietary concentrations. Each batch of treated diet was mixed for a further 100 cycles in a Turbula mixer.
For the control diet, an amount of diet was added directly to the corn oil and then prepared as indicated for the premix.
- Frequency of preparation: Weekly.
- Storage of formulation: Deep-frozen (nominally -30 to -10 °C) until the day before use. Formulations were used within 28 h of removal from the freezer.
Details on mating procedure:
- Animals: Toxicity phase and Recovery phase males with Reproductive phase females (Toxicity and Recovery phase females were not paired for mating).
- M/F ratio per cage: 1:1 from within the same treatment groups
- Pairing commenced: After a minimum of three weeks of treatment.
- Length of cohabitation: Up to 2 weeks
- Proof of pregnancy: Presence of sperm within the vaginal smear and/or ejected copulation plugs referred to as Day 0 of gestation.
- Male/female separation: Day when mating evidence was detected.
- Pre-coital interval: Calculated for each female as the time between first pairing and evidence of mating.
Analytical verification of doses or concentrations:
yes
Details on analytical verification of doses or concentrations:
- Stability and homogeneity: Before commencement of treatment, the suitability of the proposed mixing procedures was determined and specimen formulations at 500 and 20000 ppm were analyzed to assess the stability and homogeneity of the test item in the diet matrix.
- Achieved concentration: Samples of each formulation prepared for administration in Week 1 and in the final week of treatment were analyzed for achieved concentration of the test item.
Duration of treatment / exposure:
Reproductive phase females: Three weeks before pairing, then throughout pairing and gestation until Day 12 of lactation (necropsy on Day 13 of lactation (the diet was available to the animals until the morning of necropsy)).
Toxicity phase males: Three weeks before pairing up to necropsy after minimum of six weeks.
Toxicity phase females: At least six weeks.
Recovery phase males: Three weeks before pairing up to necropsy after minimum of six weeks followed by a minimum 14-day recovery.
Recovery phase females: At least six weeks followed by a minimum 14-day recovery.
Animals of the F1 generation received no direct administration of test item; any exposure was in utero or via the milk.
Frequency of treatment:
Continuously
No. of animals per sex per dose:
Reproductive phase females: 10 animals/dose
Toxicity phase females: 5 females/dose in all groups; 5 males/dose in control and high dose groups; 10 males/dose in low and mid dose groups
Recovery phase animals: 5 animals/sex/dose in control and high dose groups
Control animals:
yes, plain diet
Details on study design:
- Dose selection rationale: Dietary levels were selected following the completion of the preliminary toxicity study (Envigo Study number: ) following consultation with the Sponsor.

- Rationale for animal assignment: On arrival and non-selective allocation to cages.
Estrous cycles were evaluated prior to treatment. After 14 days evaluation, animals that failed to exhibit typical 4-5 day cycles were not allocated to the reproductive phase of the study.
On Day 1 of study all animals were weighed and body weights were reviewed before feeding of the treated diets by Study Management to ensure variations in body weight of animals did not exceed ±20% of the mean for each sex. Groups were adjusted to reduce inter-/intra-group variation.
- Other: Each adult animal was assigned a number and identified uniquely within the study by a tail tattoo before Day 1 of treatment. The offspring were numbered individually within each litter on Day 1 of age, using a toe tattoo.
Animal Replacement: Before the commencement of treatment, study allocation was revised to reduce inter/intra group body weight variation by replacement of animals with spares and moving animals within groups. Any individuals rejected during the acclimatization period were replaced with spare animals of suitable weight from the same batch.
Replacement before allocation: Abnormal estrus cycle - 11 females; Body weight range extremes - 3 males
Positive control:
Not applicable
Parental animals: Observations and examinations:
CAGE SIDE OBSERVATIONS: Yes
- Time schedule: Animals were inspected visually at least twice daily for evidence of ill-health or reaction to treatment. Cages were inspected daily for evidence of animal ill-health amongst the occupant(s). During the acclimatization period, observations of the animals and their cages were recorded at least once per day.
A viability check was performed near the start and end of each working day. Animals were killed for reasons of animal welfare where necessary.

DETAILED CLINICAL OBSERVATIONS: Yes
- Time schedule: Before treatment commenced, during each week of treatment and recovery, on Days 0, 6, 13 and 20 after mating and on Days 1, 6 and 12 of lactation, detailed physical examination and arena observations were performed on each animal. On each occasion, the examinations were performed at approximately the same time of day (before feeding of the treated diets on Day 1).

BODY WEIGHT: Yes
- Time schedule for examinations:
F0 Toxicity and Recovery phase males and females: Weekly during acclimatization; Before feeding of the treated diets on the day that treatment commenced (Day 1) and weekly thereafter, including the recovery phase. On Day 5 of recovery the animals were fed diets prepared for the females in the lactation phase in error (recovery control animals received control diet with the corn oil stabiliser, and recovery animals in Group 4 received treated diet (8000 ppm); On the day of necropsy.
F0 Reproductive phase females: Weekly during acclimatization; Before feeding of the treated diets on the day that treatment commenced (Day 1) and weekly before pairing; Days 0, 7, 14 and 20 after mating; Day 1, 4, 7 and 13 of lactation; On the day of necropsy.

FOOD CONSUMPTION AND COMPOUND INTAKE (if feeding study):
- The weight of food supplied to each cage, that remaining and an estimate of any spilled was recorded as follows:
F0 animals: Daily, including the recovery phase. On Day 5 of recovery the animals were fed diets prepared for the females in the lactation phase in error (recovery control animals received control diet with the corn oil stabiliser, and recovery animals in Group 4 received treated diet (8000 ppm). Food consumption was not recorded for Toxicity phase males and Reproductive phase females during the period when paired for mating (Week 3), but recommenced for males in Week 4. Food consumption was recorded continuously for Toxicity and Recovery phase females. For Reproductive phase females after mating food consumption was performed daily throughout gestation and lactation (until Day 12).
From these records the mean daily consumption per animal (g/animal/day) was calculated for each phase.

OTHER:
NEUROBEHAVIOURAL EXAMINATION:
- Time schedule:
Sensory reactivity and grip strength: Sensory reactivity and grip strength assessments were performed on all recovery animals in Groups 1 and 4 and on the lowest numbered toxicity phase males and females in Groups 2 and 3 during Week 6 of treatment.
Motor activity: During Week 6 of treatment, the motor activity of all recovery animals in Groups 1 and 4 and on the lowest numbered toxicity phase males and females in Groups 2 and 3 was measured.

OPHTHALMOLOGY
- Time schedule:
Pre-treatment: All Toxicity and Recovery phase animals and spare animals; Week 6: All Toxicity phase females and the first five Toxicity phase males of Groups 1 and 4
The eyes of the animals were examined by means of a binocular indirect ophthalmoscope. Prior to each examination, the pupils of each animal were dilated using tropicamide ophthalmic solution (Mydriacyl). The adnexae, conjunctiva, cornea, sclera, anterior chamber, iris (pupil dilated), lens, vitreous and fundus were examined.

HAEMATOLOGY AND CLINICAL CHEMISTRY:
- Time schedule for collection of blood:
Week 6: Five lowest numbered surviving Toxicity phase males and females in each group; Recovery: All male Recovery animals
- Animals fasted: Yes, blood samples were collected after overnight withdrawal of food; animals were also deprived of water overnight but had access to water for a minimum period of one hour prior to the commencement of blood sampling procedures.
- Animals were held under light general anaesthesia induced by isoflurane. Blood samples were withdrawn from the sublingual vein. Sampling was performed on the morning after overnight collection of urine.
- Haematology parameters: Haematocrit, Haemoglobin concentration, Erythrocyte count (RBC), Absolute reticulocyte count, Mean cell haemoglobin, Mean cell haemoglobin concentration, Mean cell volume, Red cell distribution width, Total leucocyte count, Differential leucocyte count: Neutrophils, Lymphocytes, Eosinophils, Basophils, Monocytes, Large unstained cells, Platelet count, Prothrombin time and Activated partial thromboplastin time.
- Blood Chemistry parameters: Alkaline phosphatase (ALP), Alanine aminotransferase (ALT), Aspartate aminotransferase (AST), Gamma-glutamyl transpeptidase (gGT), Total bilirubin, Bile acids, Urea, Creatinine, Glucose, Total cholesterol, Triglycerides, Sodium (Na), Potassium (K), Chloride (Cl), Calcium (Ca), Inorganic phosphorus, Total protein, Albumin and Albumin/globulin ratio (A/G Ratio).

Urinalysis
- Time schedule for collection of urine:
Week 6: Five lowest numbered surviving Toxicity phase males and females in each group; Recovery: All Recovery animals
Metabolism cages used for collection of urine: Yes; animals were placed in an individual metabolism cage, without access to food or water. Urine samples were collected overnight.
- Parameters:
Using manual methods: Clarity and Color/Appearance (App) - by visual assessment; Volume (Vol) - using a measuring cylinder; pH - using a pH meter; Specific gravity (SG) - by direct refractometry using a SG meter
Using Multistix reagent strips interpreted using the Clinitek®500 instrument: Ketones, Bile pigments, Urobilinogen, Blood pigments
Using a Roche P Modular Analyzer: Protein, Creatinine, Glucose, Sodium, Potassium, Chloride
A microscopic examination of the urine sediment was performed: Epithelial cells, Leucocytes (WBC), Erythrocytes (RBC), Casts and Other abnormal components (A)
The slide was also examined for abnormalities in spermatozoa and crystals.

Thyroid Hormone Analysis
- Time schedule for examination
At termination: F0 males, All F0 Reproductive phase females
Day 4 of age - F1 offspring, two females per litter (where possible) - no pups were eliminated when litter size dropped below ten/litter
- one for T4 (serum)#
- one for TSH (plasma - optional analysis)
# priority given to serum sample
Day 13 of age: F1 offspring, two males and two females per litter (where possible)
- two for T4 (serum): where possible one male and one female#
- two for TSH (plasma): where possible one male and one female
# priority given to serum sample

PARTURITION OBSERVATIONS AND GESTATION LENGTH:
- Duration of gestation: Time elapsing between the detection of mating and commencement of parturition.
- Parturition observations: From Day 20 after mating, females were inspected three times daily for evidence of parturition. The progress and completion of parturition was monitored, numbers of live and dead offspring were recorded and any difficulties observed were recorded.
Oestrous cyclicity (parental animals):
Estrous Cycle
Wet smears:
Using pipette lavage during the following phases:
- For 14 days before treatment (all females including spares); animals that failed to exhibit 4-5 day cycles were not allocated to the Reproductive phase of the study.
- After pairing until mating.
- For four days before scheduled termination (all Reproductive phase, Toxicity phase and Recovery phase females).

Dry smears:
Reproductive phase females: from beginning of treatment until animals were paired for mating, using cotton swabs (approximately three weeks).
Litter observations:
Clinical observations: Examined at approximately 24 h after birth (Day 1 of age) and then daily thereafter for evidence of ill health or reaction to maternal treatment; these were on an individual offspring basis or for the litter as a whole, as appropriate.
Litter size: Daily records were maintained of mortality and consequent changes in litter size from Days 1-13 of age.
Sex ratio of each litter Recorded on Days 1, 4, 7 and 13 of age.
Individual offspring body weights: Days 1, 4, 7 and 13 of age.
Ano-genital distance: Day 1 - all F1 offspring.
Nipple/areolae count: Day 13 of age - male offspring.
Postmortem examinations (parental animals):
SACRIFICE
Time of necropsy
Toxicity phase:
F0 males and females: After Week 6 investigations were completed.
Reproductive phase females:
F0 females failing to produce a viable litter: Day 25 after mating.
F0 females: Day 13 of lactation.
Recovery phase
F0 Males and females: After at least 14 days without treatment.
- Method of sacrifice: All adult animals were killed by Carbon dioxide asphyxiation with subsequent exsanguination. (No animal was exposed to carbon dioxide until after completion of thyroid hormone assays).

GROSS NECROPSY
- Necropsy: All adult animals were subject to a detailed necropsy. After a review of the history of each animal, a full macroscopic examination of the tissues was performed. All external features and orifices were examined visually. Any abnormality in the appearance or size of any organ and tissue (external and cut surface) was recorded and the required tissue samples preserved in appropriate fixative.
Main phase females
The following were recorded:
Each uterine horn: Number of implantation sites was counted and confirmed.

ORGAN WEIGHTS
- For bilateral organs, left and right organs were weighed together. Requisite organs were weighed for animals killed at scheduled intervals.

HISTOPATHOLOGY
- Fixation: Tissues were routinely preserved in 10% Neutral Buffered Formalin with the exception of those detailed below:
Testes: Initially in modified Davidson’s fluid; Eyes: In Davidson’s fluid.
- Histology
Processing: Tissue samples were dehydrated, embedded in paraffin wax and sectioned at a nominal four to five micron thickness. For bilateral organs, sections of both organs were prepared. A single section was prepared from each of the remaining tissues required.
Full List: All F0 animals killed or dying prematurely; Toxicity phase males and females in Groups 1 and 4 at scheduled termination.
Abnormalities: All remaining adult animals.
Routine staining: Sections were stained with hematoxylin and eosin; in addition samples of the testes were stained using a standard periodic acid/Schiff (PAS) method.
Postmortem examinations (offspring):
SACRIFICE
Time of necropsy:
Selected offspring for Day 4 thyroid hormone analysis - Day 4 of age.
Scheduled kill - Day 13 of age.
Method of sacrifice:
- Offspring- selected for thyroid hormone sampling on Day 4 or Day 13 of age: Decapitation
- Offspring - not selected for thyroid hormone sampling: Intraperitoneal injection of sodium pentobarbitone.

GROSS NECROPSY
Where possible, a fresh macroscopic examination (external and internal) with an assessment of stomach for milk content was performed. Abnormal tissues retained.
- F1 offspring on Day 4 of age:
Blood sampling required
Externally normal offspring discarded without examination.
Externally abnormal offspring identified on despatch to necropsy, examined externally, and retained pending possible future examination.
- F1 offspring on Day 13 of age
Blood sampling required
All animals (but not including those selected for thyroid hormone analysis) were subject to an external macroscopic examination; particular attention was paid to the external genitalia. Thyroid glands were preserved from one male and one female in each litter.
Animals selected for thyroid hormone analysis: externally normal offspring discarded without examination; externally abnormal offspring examined.
Statistics:
See "Any other information on materials and methods incl. tables"
Reproductive indices:
Mating Performance and Fertility:
- Percentage mating = (Number animals mating / Animals paired) x 100
- Conception rate (%) = (Number animals achieving pregnancy / Animals mated) x 100
- Fertility index (%) = (Number animals achieving pregnancy / Animals pairing) x 100
Gestation Length and Index: Gestation length was calculated as the number of gestation days up to and including the day on which offspring were first observed, with Day 1 = day of mating for calculation purposes. Where parturition had started overnight, this value was adjusted by subtracting half of one day.
Gestation index was calculated for each group as:
- Gestation index (%) = (Number of live litters born / Number pregnant ) x 100
Offspring viability indices:
Survival indices:
- Post-implantation survival index (%) = (Total number of offspring born / Total number of uterine implantation sites) x 100
- Live birth index (%) = (Number of live offspring on Day 1 after littering / Total number of offspring born) x 100
- Viability index (%) = (Number of live offspring on Day 4 (before blood sampling) / Number live offspring on Day 1 after littering) x 100
- Lactation index (%) = (Number of live offspring on Day 13 of lactation / Number live offspring on Day 4 (after blood sampling)) x 100
Sex ratio: The percentage of male offspring in each litter was calculated at Day 1, and for live offspring on Days 1, 4 and 13 of age.
- Percentage males = (Number of males in litter / Total number of offspring in litter) x 100
Water consumption and compound intake (if drinking water study):
not examined
Immunological findings:
not examined
Key result
Remarks on result:
not determinable
Remarks:
on-going study
Key result
Critical effects observed:
no
Key result
Remarks on result:
not determinable
Remarks:
on-going study
Key result
Critical effects observed:
not specified
Key result
Reproductive effects observed:
not specified
Executive summary:

In a Combined Repeated Dose Toxicity Study with the Reproduction / Developmental Toxicity Screening Test conducted according to OECD Guideline 422 and in compliance with GLP, the test item was administered to groups of Crl:CD(SD) rats at dietary concentrations of ppm.

Reproductive females were treated daily for three weeks before pairing, throughout pairing, gestation and until Day 12 of lactation. Females were allowed to litter and rear their offspring to weaning and were killed on Day 13 of lactation. The F1 generation was killed on Day 4 or Day 13 of age, but received no direct administration of test item; any exposure was in utero or via the milk. Toxicity phase males were treated daily for three weeks before pairing up to necropsy after a minimum of six consecutive weeks. Toxicity phase females were treated daily for a minimum of six consecutive weeks. Recovery phase males were treated daily for three weeks before pairing up to necropsy after a minimum of six consecutive weeks followed by a minimum of 14 days recovery. Recovery phase females were treated daily for a minimum of six consecutive weeks followed by a minimum of 14 days recovery. A similarly constituted Control group was assigned to each phase, and received the vehicle, powdered SDS VRF1 Certified diet with corn oil, throughout the same relative treatment period. During the study, clinical condition, detailed physical examination and arena observations, sensory reactivity observations, grip strength, motor activity, body weight, food consumption, ophthalmic examination, hematology (peripheral blood), blood chemistry, thyroid hormone analysis, urinalysis, estrous cycles, pre-coital interval, mating performance, fertility, gestation length, organ weight and macroscopic pathology and histopathology investigations were undertaken. The clinical condition, litter size and survival, sex ratio, body weight, nipple counts (males only), ano-genital distance and macropathology for all offspring were also assessed. 

Effect on fertility: via inhalation route
Endpoint conclusion:
no study available
Effect on fertility: via dermal route
Endpoint conclusion:
no study available

Effects on developmental toxicity

Effect on developmental toxicity: via oral route
Endpoint conclusion:
no study available
Effect on developmental toxicity: via inhalation route
Endpoint conclusion:
no study available
Effect on developmental toxicity: via dermal route
Endpoint conclusion:
no study available

Justification for classification or non-classification