Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Environmental fate & pathways

Biodegradation in water: screening tests

Currently viewing:

Administrative data

Link to relevant study record(s)

Reference
Endpoint:
biodegradation in water: ready biodegradability
Type of information:
calculation (if not (Q)SAR)
Adequacy of study:
weight of evidence
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
accepted calculation method
Justification for type of information:
Data is from computational model developed by USEPA
Qualifier:
according to guideline
Guideline:
other: Modeling database
Principles of method if other than guideline:
The Biodegradation Probability Program (BIOWIN) estimates the probability for the rapid aerobic biodegradation of an organic chemical in the presence of mixed populations of environmental microorganisms .The model is part of the EpiSuite program of the US-EPA. Estimations are made with BIOWIN version 4.10. Estimates are based upon fragment constants that were developed using multiple linear and non-linear regression analyses. Experimental biodegradation data for the multiple linear and non-linear regressions were obtained from Syracuse Research Corporation's (SRC) data base of evaluated biodegradation data (Howard et. al., 1987). This version (v4.10) designates the models as follows (see also Boethling et al. 2003):
Biowin1 = linear probability model
Biowin2 = nonlinear probability model
Biowin3 = expert survey ultimate biodegradation model
Biowin4 = expert survey primary biodegradation model
Biowin5 = MITI linear model
Biowin6 = MITI nonlinear model
Biowin7 = anaerobic biodegradation model
GLP compliance:
not specified
Oxygen conditions:
other: aerobic (Biowin 1-6) and anaerobic (Biowin 7)
Inoculum or test system:
other: mixed populations of environmental microorganisms
Details on study design:
Using the computer tool BIOWIN v4.10 by US-EPA (EPIWIN) the aerobic as well as the anaerobic biodegradability of the test material can be estimated. The follwoing seven different models are used by the tool: Linear Model, Non-Linear Model, Ultimate Biodegradation Timeframe, Primary Biodegradation Timeframe, MITI LInear Model, MITI Non-Linear Model and Anaerobic Model (calles Biowin 1-7, respectively). Due to this results the overall prediction of readily biodegradability is done for the desired chemical.

Biowin 1 and 2, are intended to convey a general indication of biodegradability under aerobic conditions, and not for any particular medium.
Biowin 1 (Linear model)
The fast biodegradation probability for any compound is calculated by summing, for all the fragments present in that compound, the fragment coefficient multiplied by the number of instances of the fragment in the compound (for MW, the value of that parameter is multiplied by its coefficient), and then adding this summation to the equation constant which is 0.7475. The summed values for each fragment coefficient multiplied by the number of instances appear in the "VALUE" column of the linear results screen.

Biowin 2 (Non-linear model)
Calculation of the fast biodegradation probability for any compound begins by summing, for all the fragments present in that compound, the fragment coefficient multiplied by the number of instances of the fragment in the compound (for MW, the value of that parameter is multiplied by its coefficient), then adding this summation to the equation constant which is 3.0087. The summed values for each fragment coefficient multiplied by the number of instances appear in the "VALUE" column of the non-linear results screen. The non-linear fast biodegradation probability is then calculated from the logistic equation as follows, where total = 3.0087 + the summation as described above:

Biowin 3 and 4 yield estimates for the time required to achieve complete ultimate and primary biodegradation in a typical or "evaluative" aquatic environment.

Biowin 5 and 6 are predictive models for assessing a compound’s biodegradability in the Japanese MITI (Ministry of International Trade and Industry) ready biodegradation test; i.e. OECD 301C. These models use an approach similar to that used to develop Biowin1 and 2. This protocol for determining ready biodegradability is among six officially approved as ready biodegradability test guidelines of the OECD (Organization for Economic Cooperation and Development). A total dataset of 884 chemicals was compiled to derive the fragment probability values that are applied in this MITI Biodegradability method. The dataset consists of 385 chemical that were critically evaluated as "readily degradable" and 499 chemicals that were critically evaluated as "not readily biodegradable".

Biowin 7, the anaerobic biodegradation model, is the most recent. As for the other Biowin models, multiple (linear) regression against molecular fragments was used to develop the model, which predicts probability of rapid degradation in the "serum bottle" anaerobic biodegradation screening test. This endpoint is assumed to be predictive of degradation in a typical anaerobic digester. Biowin7 estimates the probability of fast biodegradation under methanogenic anaerobic conditions; specifically, under the conditions of the "serum bottle" anaerobic biodegradation screening test (Meylan et al. 2007). A total of 169 compounds with serum bottle test data were identified for use in model development.

Out of seven different Biowin models, Biowin model 3 and 4 will help in estimating biodgeradability of the test chemical which was described as below-

Ultimate Biodegradation Timeframe and Primary Biodegradation Timeframe (Biowin 3 and 4)
These two models estimate the time required for "complete" ultimate and primary biodegradation.  Primary biodegradation is the transformation of a parent compound to an initial metabolite.  Ultimate biodegradation is the transformation of a parent compound to carbon dioxide and water, mineral oxides of any other elements present in the test compound, and new cell material. Then the rating was given to each model, which indicates the time required to achieve ultimate and primary biodegradation in a typical or "evaluative" aquatic environment. The ratings for each compound were averaged to obtain a single value for modeling.  The ultimate or primary rating of a compound is calculated by summing, for all the fragments present in that compound.
Key result
Remarks on result:
other: not readily biodegradable as estimated by BIOWIN model
Validity criteria fulfilled:
not specified
Interpretation of results:
not readily biodegradable
Conclusions:
The biodegradability of the test chemical was calculated using seven different Biowin 1-7 models of the BIOWIN v4.10 software. The results indicate that the test chemical is expected to be not readily biodegradable.
Executive summary:

Estimation Programs Interface Suite (2018) was run to predict the biodegradation potential of the test chemical in the presence of mixed populations of environmental microorganisms. The biodegradability of the substance was calculated using seven different models such as Linear Model, Non-Linear Model, Ultimate Biodegradation Timeframe, Primary Biodegradation Timeframe, MITI Linear Model, MITI Non-Linear Model and Anaerobic Model (called as Biowin 1-7, respectively) of the BIOWIN v4.10 software. The results indicate that test chemical is expected to be not readily biodegradable.

Description of key information

Estimation Programs Interface Suite (2018) was run to predict the biodegradation potential of the test chemical in the presence of mixed populations of environmental microorganisms. The biodegradability of the substance was calculated using seven different models such as Linear Model, Non-Linear Model, Ultimate Biodegradation Timeframe, Primary Biodegradation Timeframe, MITI Linear Model, MITI Non-Linear Model and Anaerobic Model (called as Biowin 1-7, respectively) of the BIOWIN v4.10 software. The results indicate that test chemical is expected to be not readily biodegradable.

Key value for chemical safety assessment

Biodegradation in water:
under test conditions no biodegradation observed

Additional information

Predicted data of the test chemical and various supporting studies for its structurally similar read across substance were reviewed for the biodegradation end point which are summarized as below:

 

In a prediction done using Estimation Programs Interface Suite (2018), the biodegradation potential of the test chemical in the presence of mixed populations of environmental microorganisms was predicted. The biodegradability of the substance was calculated using seven different models such as Linear Model, Non-Linear Model, Ultimate Biodegradation Timeframe, Primary Biodegradation Timeframe, MITI Linear Model, MITI Non-Linear Model and Anaerobic Model (called as Biowin 1-7, respectively) of the BIOWIN v4.10 software. The results indicate that test chemical is expected to be not readily biodegradable.

 

In a supporting study from peer reviewed journal (Elias Razo Flores et. al., 1996) for the test item,biodegradation experiment was conducted for 150 days for evaluating the percentage biodegradability of test chemical. The study was performed under anaerobic conditions at a temperature of 30°C.The methanogenic granular sludge obtained from a full-scale upward-flow anaerobic sludge bed reactor (UASB) treating a petrochemical wastewater containing benzoate and acetate as primary substrates was used as a test inoculum for the study .The sludge was elutriated to remove the fines and predigested at 30°C during a 30 days period in order to deplete all endogenous substrate in the sludge. The sludge contained 10.5% TSS and 8.5% VSS. Initial test substance conc. used in the study was 100 mg/l, respectively. 120 ml glass serum flask was used as a test vessel for the study. Basal medium was used as a test medium for the study, with the exception of NaHCO3 supplied at 5 g/l. Predigested granular sludge (1 g VSS/L) was transferred to serum flasks containing 24 mL of the basal medium and acetate from a neutralized stock to yield a final concentration of 50 mg of chemical oxygen demand (COD)/L. The serum flasks were sealed with 12 mm thick butyl rubber stoppers and flushed with 70% N2-30% CO2 gas for 5 minutes and incubated overnight at 30°C to allow for biological consumption of residual O2. The desired amount of test chemical was then added to triplicate serum flasks using concentrated stock solutions. Later serum flasks were incubated with shaking (50 rpm) in a temperature controlled room at 30°C over a 150 day period. The methane composition in the headspace of each serum flask was monitored periodically during the assays. The serum flasks were shaken vigorously before gas measurements were taken. Methane production was calculated from the volume of the headspace and the methane composition in the gas. Net methane production was calculated by subtracting background methane production in the controls from that in the test vials. The corrected methane production (M) was expressed as a percentage of the theoretical methane production (TMP) expected from the test chemical mineralization. Sludge blank which contains no test chemical was setup to correct for background gas production from the sludge. Both Benzoate and phenol were used as reference compounds in the study. The concentrations of benzoate and phenol used were 250 mg/L. The benzoate was completely degraded in 20 days and the phenol in 45 days. ultimate conversion of the substrate COD to methane was equal to 85.5% ± 1.82 and 82.8% ± 2.32 for benzoate and phenol respectively. The percentage degradation of test chemical was determined to be 0% after 150 days. Thus, based on percentage degradation, test chemical is considered to be not biodegradable in water.

 

Another biodegradation study was conducted for 28 days for evaluating the percentage biodegradability of test chemical (from authoritative database, 2018 and secondary source, 2014). The study was performed according to OECD Guideline 301 C (Ready Biodegradability: Modified MITI Test (I) under aerobic conditions. Activated sludge was used as test inoculums for the study. Concentration of inoculum i.e, sludge used was 30 mg/l and initial test substance conc. used in the study was 100 mg/l, respectively. The percentage degradation of test chemical was determined to 0 and 5% by BOD, TOC removal and HPLC parameter in 28 days. Thus, based on percentage degradation, test chemical is considered to be not readily biodegradable in nature.

 

For the test chemical, biodegradation experiment was conducted for 28 days for evaluating the percentage biodegradability of test chemical (from authoritative database, 2018 and secondary source, 2010). The study was performed according to OECD Guideline 301 C (Ready Biodegradability: Modified MITI Test (I) under aerobic conditions. Activated sludge was used as a test inoculums for the study. Concentration of inoculum i.e, sludge used was 30 mg/l and initial test substance conc. used in the study was 100 mg/l, respectively. The percentage degradation of test chemical was determined to be 23 and 0% by BOD, TOC removal and HPLC parameter in 28 days. Thus, based on percentage degradation, test chemical is considered to be not readily biodegradable in nature.

 

On the basis of above overall results of test chemical, it can be concluded that the test chemical can be considered to be not readily biodegradable in nature.