Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 417-070-7 | CAS number: 151006-62-1 1-DODECENE TRIMER, HYDROGENATED; ALKANE 4
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Bioaccumulation: aquatic / sediment
Administrative data
Link to relevant study record(s)
Description of key information
In accordance with Column 2 Adaptation as stated in REACH Regulation (EC) No. 1907/2006 (section 9.3.2, Annex IX) the bioaccumulation study does not need to be conducted if the substance has a low potential to cross bioolgical membranes.
The optimal range for diffusive uptake is log Kow -1 to 4 according to ECHA guidance chapter R.7c , see toxicokinetic assessment). Moderate log P values (between -1 and 4) are favourable for absorption by passive diffusion. Any lipophilic compound may be taken up by micellular solubilisation but this mechanism may be of particular importance for highly lipophilic compounds (log P >4), particularly those that are poorly soluble in water (1 mg/l or less) that would otherwise be poorly absorbed.
The submission substance has a log Kow >10 and is therefore not expected to bioaccumulate.
Infact, for reasons mentioned above, members of this category are not expetced to bioaccumulate.
Key value for chemical safety assessment
Additional information
Experimental data on Kow are available for several members of this category. For the alkane with CAS No. 68649-11-6 log Kow is measured as >6.5 (Walker and Mullee, 2006) and > 4.82 (Hogg and Bartlett, 1995). For CAS No. 68649-12-7, experimental data measures log Kow as > 5 (Howard, 1982), > 7.6 (Seary, 2000) and > 3.87 (Hogg and Bartlett, 1995). For CAS No. 68037-01-4 an experimental value of >6.5 (Walker and Mullee, 2006) is given. As the majority of the experimental log Kow for substances in this category are greater than 4.5 this indicates that an estimate of the bioaccumulation potential is required.
Non-polar substances have been shown to have a linear relationship between log Kow and BCF in the log Kow range 1 -6. However, at log Kow >6 a decreasing relationship is observed. ECHA’s Guidance on information requirements and chemical safety assessment - Part C: PBT Assessment (2008) states that the aquatic BCF of a substance is probably lower than 2000 L/kg if the calculated log Kow is higher than 10. All of the experimental log Kow values for substances in this category are unbounded due to limitations of the experimental method, so do not allow us to conclude if the log Kow is greater than 10. Calculated partition coefficients have been obtained from EPIWEB 4.0 (USEPA, 2008) and SPARC (Karickhoff et al, 2009) for dec-1-ene dimer, hydrogenated (CAS 68649-11-6) and dec-1-ene trimer, hydrogenated (CAS 157707-86-3) as these are the only two members of this category being registered as substances with predominantly a single carbon number. The calculated log Kow for CAS No. 68649-11-6 is 10.09 and 11.71 and for CAS No. 157707-86-3 is 14.93 and 17.21 (USEPA, 2008 and Karickhoff et al, 2009 respectively). All of the calculated log Kow values are greater than 10.
There is a clear trend of increasing log Kow with increasing carbon number in the alkanes and olefins. Dec-1-ene dimer hydrogenated (CAS 68649 -11 -6) is the category member with the lowest carbon number, and therefore will be the category member with the lowest partition coefficient. This therefore indicates that the calculated log Kow of all category members would be >10. As QSAR models do not have experimental data in this Kow range the reliability of modelled Kow values > 10 is not known. However, as two models indicate a log Kow >10 for the category member with the lowest carbon number we can conclude that members of this category are unlikely to be bioaccumulative and therefore that conducting a study to determine an experimental BCF is not scientifically justified.
In addition, the expert paper (Girling 2007) on structural analogue Alkane 4 concluded that the BCF of Alkane 4 will be below 10 and that it will not therefore meet the criterion of BCF >5000 for being considered very bioaccumulative (vB) or the lesser criterion of BCF >2000 for being considered bioaccumulative (B). This expert paper further supports that Alkane 6 is not expected to bioaccumulate.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.