Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 910-704-8 | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Short-term toxicity to fish
Administrative data
- Endpoint:
- short-term toxicity to fish
- Type of information:
- migrated information: read-across from supporting substance (structural analogue or surrogate)
- Adequacy of study:
- key study
- Study period:
- September 6, 2007 - September 10, 2007
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- other: see 'Remark'
- Remarks:
- GLP study according to OECD 203. No. of replicates per concentration used = 1. Rationale for read-across: in the environment, lime substances rapidly dissociate or react with water. These reactions, together with the equivalent amount of hydroxyl ions set free when considering 100mg of the lime compound (hypothetic example), are illustrated below: Ca(OH)2 <-> Ca2+ + 2OH- 100 mg Ca(OH)2 or 1.35 mmol sets free 2.70 mmol OH Ca(OH)2 + 2Ca2SiO4 +9CaCO3 + 13H2O <-> 14Ca2+ + 2SiO2 + 9CO2 + 28OH- 100 mg “Reaction mass of limestone and dicalcium silicate” or 0.08 mmol sets free 2.24 mmol OH- has to be noted that CO32- is not expected to directly release two hydroxyl ions under most environmental conditions (depends on CO2 concentrations and pH) and this is therefore a worst case assumption. From these reactions it is clear that the effect of "Reaction mass of limestone and dicalcium silicate" will be caused either by calcium or hydroxyl ions. Since calcium is abundantly present in the environment and since the effect concentrations are within the same order of magnitude of its natural concentration, it can be assumed that the adverse effects are mainly caused by the pH increase caused by the hydroxyl ions. Furthermore, the above mentioned calculations show that the base equivalents are within a factor 2 for lime (chemical), hydraulic and calcium hydroxide. As such, it can be reasonably expected that the effect on pH of "Reaction mass of limestone and dicalcium silicate" is comparable to calcium hydroxide for a same application on a weight basis. Consequently, read-across from calcium hydroxide to "Reaction mass of limestone and dicalcium silicate" is justified.
Data source
Reference
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 2 007
- Report date:
- 2007
Materials and methods
Test guideline
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 203 (Fish, Acute Toxicity Test)
- GLP compliance:
- yes (incl. QA statement)
Test material
- Reference substance name:
- Calcium dihydroxide
- EC Number:
- 215-137-3
- EC Name:
- Calcium dihydroxide
- Cas Number:
- 1305-62-0
- Molecular formula:
- CaH2O2
- IUPAC Name:
- calcium dihydroxide
- Details on test material:
- IUPAC name: Calcium dihydroxide
Product type: PRECAL(R) 50S
Batch no: 7025
Received: 30 January 2007
Purity active ingredient: 98.2% calcium dihydroxide
Chemical analysis: 74.4% CaO, 0.6% MgO, 0.07% SiO2, 0.05% Al2O3, 0.04% Fe2O3, 0.02% Mn3O4, 0.01% SiO3
Air jet sieving: R>90 um 4%; R>200 um 0.1%; R>630 um 0%
Laser particle size distribution: 27.3% <1 um; 50% < 1.7 um; 97% < 50 um
Expiry date: 30 January 2009
Appearance: white powder
Water solubility (20°C): 1.26 g/l
Storage conditions: room temperature, dry conditions
Constituent 1
Sampling and analysis
- Analytical monitoring:
- yes
- Details on sampling:
- TEST MEDIUM
- samples were taken in duplicate of all test solutions and the control
- stored with minimum headspace above solution at ambient temperature in plastic bottles
- sampling time points: at beginning of test and at the end of test immediately after determination of biological and physico-chemical parameters
Test solutions
- Vehicle:
- no
- Details on test solutions:
- - Evidence of undissolved material (e.g. precipitate, surface film, etc): With increasing test item concentrations, precipitates formed over time. The formation of precipitates is likely the result of the reaction
between Calcium hydroxide and Carbon dioxide dissolved in the medium yielding poorly soluble Calcium carbonate. At the end of the test, precipitates were found to be difficult to release from the bottom of
the test vessels.
- test item was weighed for each test vessel into a weighboat, added to 10L of temperature adapted test medium directly in the test tank and stirred vigorously for 1 minute. under stirring the pH was
measured.
Test organisms
- Test organisms (species):
- Oncorhynchus mykiss (previous name: Salmo gairdneri)
- Details on test organisms:
- - common name: rainbow trout
- source: Forellenzucht Trostadt GbR, 98646 Trostadt, Thüringen, Germany
- date of purchase: August 13, 2007
- additional information see 'Holding conditions' in table 1
Study design
- Test type:
- static
- Water media type:
- freshwater
- Limit test:
- no
- Total exposure duration:
- 96 h
Test conditions
- Hardness:
- 232 mg/L CaCO3
- Test temperature:
- 15.0-15.5°C
- pH:
- 7.6-11.1
- Dissolved oxygen:
- 8.4-10.1 mg/L
- Details on test conditions:
- EXPOSURE CONDITIONS
− Amount of test solution per test vessel: 10 L
− Depth of test solution in the test vessels: 11.5 cm
− Number of fish per test vessel: 7
− Average length of fish: 4.8 ± 0.6 cm (n = 11)
− Average weight of fish: 1.2 ± 0.5 g (n = 11)
− Fish loading: 0.84 g per L
− Renewal of the test solution during the test period: none
− Feeding: none
− Photoperiod: light/dark - 12 h/12 h
− Light intensity: 100 - 1000 lx; measured: 255 ± 34 (SD) lx
− Temperature (min / max): 15.0 / 15.5 °C
− Aeration: permanent - Reference substance (positive control):
- no
Results and discussion
Effect concentrations
- Duration:
- 96 h
- Dose descriptor:
- LC50
- Effect conc.:
- 50.6 mg/L
- Nominal / measured:
- nominal
- Conc. based on:
- not specified
- Basis for effect:
- mortality (fish)
- Details on results:
- - Behavioural abnormalities: no data
- Other biological observations: at 33.3 mg/L and higher an increased mucus production was observed. At 50 and 75 mg/L (initial pH 11.1) all fish showed whitish discoloration of the fins, probably due to
severe corrosion.
- Mortality of control: no
- Other adverse effects control: no
- Any observations (e.g. precipitation) that might cause a difference between measured and nominal values: the measured Ca concentrations were much below the nominal concentrations, due to the high
concentration of Ca from CaCl2 already present in the test medium, and due to the reaction of the test item with CO2 to poorly soluble CaCO3, thus forming precipitates. However, measurement of Ca after
acidification at the end of the test resulted in a recovery of 98% (58-122%).
- Initial pH values: 7.8 (control), 9.6 (14.8 mg/L), 9.9 (22.2 mg/L), 10.4 (33.3 mg/L), 10.8 (50 mg/L) and 11.1 (75 mg/L).
Applicant's summary and conclusion
- Validity criteria fulfilled:
- yes
- Remarks:
- Mortality in the control: 0%. Dissolved oxygen concentration in control and test vessels: ≥84,8%
- Conclusions:
- A clear concentration-response relationship was observed.
The biological findings were closely related to the initial pH of the test solutions. Therefore the initial pH is considered to be the main reason for the effects of the test item on the test organisms.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.
