Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 940-667-3 | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Genetic toxicity: in vitro
Administrative data
- Endpoint:
- in vitro gene mutation study in bacteria
- Remarks:
- Type of genotoxicity: gene mutation
- Type of information:
- migrated information: read-across from supporting substance (structural analogue or surrogate)
- Adequacy of study:
- key study
- Study period:
- The experimental phase of this study was performed between 03 April 2013 and 31 May 2013.
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- other: see 'Remark'
- Remarks:
- Study conducted to GLP and in compliance with agreed protocols, with no or minor deviations from standard test guidelines and/or minor methodological deficiencies, which do no effect the quality of the relevant results. This read-across is based on the hypothesis that the Source and Target substances will have similar toxicological and ecotoxicological properties due to their close physical-chemical and structural similarities. For example, both the Source and Target substances are monoconstituents which share structural similarities and contain the same functional groups (thio ether, sulfonate, vicinal nitrile groups).
Data source
Reference
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 2 013
- Report date:
- 2013
Materials and methods
Test guidelineopen allclose all
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 471 (Bacterial Reverse Mutation Assay)
- Deviations:
- no
- Qualifier:
- according to guideline
- Guideline:
- EU Method B.13/14 (Mutagenicity - Reverse Mutation Test Using Bacteria)
- Deviations:
- no
- Qualifier:
- according to guideline
- Guideline:
- JAPAN: Guidelines for Screening Mutagenicity Testing Of Chemicals
- Deviations:
- no
- Qualifier:
- equivalent or similar to guideline
- Guideline:
- EPA OPPTS 870.5100 - Bacterial Reverse Mutation Test (August 1998)
- Version / remarks:
- Meets the requirements of the Japanese Regulatory Authorities including METI, MHLW and MAFF, OECD Guidelines for Testing of Chemicals No. 471 "and the USA, EPA (TSCA) OPPTS harmonised guidelines.
- Deviations:
- no
- GLP compliance:
- yes (incl. QA statement)
- Remarks:
- Please refer to attached background material
- Type of assay:
- bacterial reverse mutation assay
Test material
- Reference substance name:
- Automatically generated during migration to IUCLID 6, no data available
- IUPAC Name:
- Automatically generated during migration to IUCLID 6, no data available
- Test material form:
- solid: particulate/powder
- Remarks:
- migrated information: powder
- Details on test material:
- see Confidential details on test material
Constituent 1
Method
- Target gene:
- Histidine for Salmonella.
Tryptophan for E.Coli
Species / strainopen allclose all
- Species / strain / cell type:
- S. typhimurium TA 1535, TA 1537, TA 98 and TA 100
- Details on mammalian cell type (if applicable):
- Not applicable.
- Additional strain / cell type characteristics:
- not applicable
- Species / strain / cell type:
- E. coli WP2 uvr A
- Details on mammalian cell type (if applicable):
- Not applicable.
- Additional strain / cell type characteristics:
- not applicable
- Metabolic activation:
- with and without
- Metabolic activation system:
- phenobarbitone/betanaphthoflavone induced rat liver, S9
- Test concentrations with justification for top dose:
- Experiment one: 1.5, 5, 15, 50, 150, 500, 1500 and 5000 µg/plate
Experiment two: 50, 150, 500, 1500 and 5000 µg/plate - Vehicle / solvent:
- - Vehicle(s)/solvent(s) used: Sterile distilled water.
- Justification for choice of solvent/vehicle: The test item was fully soluble in sterile distilled water at 50 mg/ml in solubility checks performed
in-house.
Controlsopen allclose all
- Untreated negative controls:
- yes
- Remarks:
- Spontaneous mutation rates of TA100
- Negative solvent / vehicle controls:
- yes
- Remarks:
- Sterile distilled water
- True negative controls:
- no
- Positive controls:
- yes
- Positive control substance:
- other: 2-Aminoanthracene: 1 µg/plate
- Remarks:
- With S9 mix
- Untreated negative controls:
- yes
- Remarks:
- Spontaneous mutation rates of TA1535
- Negative solvent / vehicle controls:
- yes
- Remarks:
- Sterile distilled water
- True negative controls:
- no
- Positive controls:
- yes
- Positive control substance:
- other: 2-Aminoanthracene: 2 µg/plate
- Remarks:
- With S9 mix
- Untreated negative controls:
- yes
- Remarks:
- Spontaneous mutation rates of TA1537
- Negative solvent / vehicle controls:
- yes
- Remarks:
- Sterile distilled water
- True negative controls:
- no
- Positive controls:
- yes
- Positive control substance:
- other: 2-Aminoanthracene: 2 µg/plate
- Remarks:
- With S9 mix
- Untreated negative controls:
- yes
- Remarks:
- Spontaneous mutation rates of WP2uvrA
- Negative solvent / vehicle controls:
- yes
- Remarks:
- Sterile distilled water
- True negative controls:
- no
- Positive controls:
- yes
- Positive control substance:
- other: 2-Aminoanthracene: 10 µg/plate
- Remarks:
- With S9 mix
- Untreated negative controls:
- yes
- Remarks:
- Spontaneous mutation rates of TA98
- Negative solvent / vehicle controls:
- yes
- Remarks:
- Sterile distilled water
- True negative controls:
- no
- Positive controls:
- yes
- Positive control substance:
- benzo(a)pyrene
- Remarks:
- With S9 mix
Migrated to IUCLID6: Benzo(a)pyrene: 5 µg/plate
- Untreated negative controls:
- yes
- Remarks:
- Spontaneous mutation rates of TA98
- Negative solvent / vehicle controls:
- yes
- Remarks:
- Sterile distilled water
- True negative controls:
- no
- Positive controls:
- yes
- Positive control substance:
- 4-nitroquinoline-N-oxide
- Remarks:
- without S9 mix
Migrated to IUCLID6: 4-Nitroquinoline-1-oxide: 0.2 µg/plate
- Untreated negative controls:
- yes
- Remarks:
- Spontaneous mutation rates of TA1537
- Negative solvent / vehicle controls:
- yes
- Remarks:
- Sterile distilled water.
- True negative controls:
- no
- Positive controls:
- yes
- Positive control substance:
- 9-aminoacridine
- Remarks:
- without S9 mix
Migrated to IUCLID6: 9-Aminoacridine: 80 µg/plate
- Untreated negative controls:
- yes
- Remarks:
- Spontaneous mutation rates of TA100
- Negative solvent / vehicle controls:
- yes
- Remarks:
- Sterile distilled water.
- True negative controls:
- no
- Positive controls:
- yes
- Positive control substance:
- N-ethyl-N-nitro-N-nitrosoguanidine
- Remarks:
- without S9 mix
Migrated to IUCLID6: N-ethyl-N'-nitro-N-nitrosoguanidine: 3 µg/plate
- Untreated negative controls:
- yes
- Remarks:
- Spontaneous mutation rates of TA1535
- Negative solvent / vehicle controls:
- yes
- Remarks:
- Sterile distilled water
- True negative controls:
- not specified
- Positive controls:
- yes
- Positive control substance:
- N-ethyl-N-nitro-N-nitrosoguanidine
- Remarks:
- Without S9 mix
Migrated to IUCLID6: N-ethyl-N'-nitro-N-nitrosoguanidine: 5 µg/plate
- Untreated negative controls:
- yes
- Remarks:
- Spontaneous mutation rates of WP2uvrA
- Negative solvent / vehicle controls:
- yes
- Remarks:
- Sterile distilled water
- True negative controls:
- not specified
- Positive controls:
- yes
- Positive control substance:
- N-ethyl-N-nitro-N-nitrosoguanidine
- Remarks:
- Without S9 mix
Migrated to IUCLID6: N-ethyl-N'-nitro-N-nitrosoguanidine: 2 µg/plate
- Details on test system and experimental conditions:
- METHOD OF APPLICATION: in agar (plate incorporation) for Experiment 1 and pre-incubation for Experiment 2.
DURATION
- Preincubation period for bacterial strains: 10h
- Exposure duration: 48 - 72 hrs
- Expression time (cells in growth medium): Not applicable
- Selection time (if incubation with a selection agent): Not applicable
NUMBER OF REPLICATIONS: Triplicate plating.
DETERMINATION OF CYTOTOXICITY
- Method: plates were assessed for numbers of revertant colonies and examined for effects on the growth of the bacterial background lawn. - Evaluation criteria:
- Acceptance Criteria:
The reverse mutation assay may be considered valid if the following criteria are met:
All tester strain cultures exhibit a characteristic number of spontaneous revertants per plate in the vehicle and untreated controls.
The appropriate characteristics for each tester strain have been confirmed, eg rfa cell-wall mutation and pKM101 plasmid R-factor etc.
All tester strain cultures should be in the approximate range of 1 to 9.9 x 109 bacteria per ml.
Each mean positive control value should be at least twice the respective vehicle control value for each strain, thus demonstrating both the intrinsic sensitivity
of the tester strains to mutagenic exposure and the integrity of the S9-mix.
There should be a minimum of four non-toxic test material dose levels.
There should not be an excessive loss of plates due to contamination.
Evaluation criteria:
There are several criteria for determining a positive result, such as a dose-related increase in revertant frequency over the dose range tested and/or a reproducible increase at one or more concentrations in at least one bacterial strain with or without metabolic activation. Biological relevance of the results will be considered first, statistical methods, as recommended by the UKEMS can also be used as an aid to evaluation, however, statistical significance will not be the only determining factor for a positive response.
A test item will be considered non-mutagenic (negative) in the test system if the above criteria are not met.
Although most experiments will give clear positive or negative results, in some instances the data generated will prohibit a definitive judgement about the test item activity. Results of this type will be reported as equivocal. - Statistics:
- Standard deviation.
Dunnetts Linear Regression Analysis
Results and discussion
Test resultsopen allclose all
- Species / strain:
- E. coli WP2 uvr A
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity nor precipitates, but tested up to recommended limit concentrations
- Remarks:
- Tested up to maximum recommended dose of 5000 µg/plate
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Species / strain:
- S. typhimurium TA 1535, TA 1537, TA 98 and TA 100
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity nor precipitates, but tested up to recommended limit concentrations
- Remarks:
- Tested up to maximum recommended dose of 5000 µg/plate
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Additional information on results:
- TEST-SPECIFIC CONFOUNDING FACTORS
- Water solubility: The test item was fully soluble in sterile distilled water at 50 mg/ml in solubility checks performed in-house.
- Precipitation: No test material precipitate was observed on the plates at any of the doses tested in either the presence or absence of S9-mix.
RANGE-FINDING/SCREENING STUDIES:
Experiment 1 (range-finding test):
The test item caused no visible reduction in the growth of the bacterial background lawn at any dose level and was, therefore, tested up to the maximum recommended dose level of 5000 µg/plate. The test item formulation and S9-mix used in this experiment were both shown to be sterile.
COMPARISON WITH HISTORICAL CONTROL DATA:
Prior to use, the master strains were checked for characteristics, viability and spontaneous reversion rate (all were found to be satisfactory).
Results for the negative controls (spontaneous mutation rates) were considered to be acceptable.
All of the positive control chemicals used in the test induced marked increases in the frequency of revertant colonies thus confirming the activity of the S9-mix and the sensitivity of the bacterial strains. - Remarks on result:
- other: all strains/cell types tested
- Remarks:
- Migrated from field 'Test system'.
Any other information on results incl. tables
RESULTS
MutationTest
Prior to use, the master strains were checked for characteristics, viability and spontaneous reversion rate (all were found to be satisfactory). These data are not given in the report. The amino acid supplemented top agar and the S9-mix used in both experiments was shown to be sterile.
Results for the negative controls (spontaneous mutation rates) are presented in Table1and were considered to be acceptable. These data are for concurrent untreated control plates performed on the same day as the Mutation Test.
The individual plate counts, the mean number of revertant colonies and the standard deviations, for the test item, positive and vehicle controls, both with and without metabolic activation, are presented in attached background material.
A history profile of vehicle, untreated and positive control values (reference items) is presented in attached background material.
The vehicle (sterile distilled water) control plates gave counts of revertant colonies within the normal range. All of the positive control chemicals used in the test induced marked increases in the frequency of revertant colonies, both with or without metabolic activation. Thus, the sensitivity of the assay and the efficacy of the S9-mix were validated.
The test item caused no visible reduction in the growth of the bacterial background lawn at any dose level and was, therefore, tested up to the maximum recommended dose level of 5000 µg/plate. No test item precipitate was observed on the plates at any of the doses tested in either the presence or absence of S9-mix.
No significant increases in the frequency of revertant colonies were recorded for any of the bacterial strains, with any dose of the test item, either with or without metabolic activation or exposure method.
All of the positive control chemicals used in the test induced marked increases in the frequency of revertant colonies thus confirming the activity of the S9-mix and the sensitivity of the bacterial strains.
Table 1: Spontaneous Mutation Rates (Concurrent Negative Controls
Range-finding Test
Number of revertants (mean number of colonies per plate) |
|||||||||
Base-pair substitution type |
Frameshift type |
||||||||
TA100 |
TA1535 |
WP2uvrA |
TA98 |
TA1537 |
|||||
102 |
|
12 |
|
33 |
|
16 |
|
9 |
|
82 |
(89) |
12 |
(13) |
22 |
(28) |
27 |
(23) |
11 |
(10) |
82 |
|
16 |
|
30 |
|
27 |
|
9 |
|
Main Test
Number of revertants (mean number of colonies per plate) |
|||||||||
Base-pair substitution type |
Frameshift type |
||||||||
TA100 |
TA1535 |
WP2uvrA |
TA98 |
TA1537 |
|||||
90 |
|
19 |
|
20 |
|
19 |
|
9 |
|
124 |
(94) |
17 |
(18) |
23 |
(21) |
17 |
(20) |
9 |
(12) |
67 |
|
17 |
|
21 |
|
24 |
|
19 |
|
|
19 |
|
|
||||||
17 |
(19)† |
||||||||
20 |
|
† Experimental procedure repeated at a later date (presence and absence of S9) due to high solvent counts in original test.
JUSTIFICATION OF READ ACROSS
The Source substance has a comprehensive data set generated for a REACH Annex VIII registration and this along with its similarity to the Target substance are consider sufficient to consider the read-across an appropriate adaptation to the standard information requirements of Annex VII of the REACH regulation for the Target substance in accordance with the provisions of Annex XI, 1.5 of the REACH regulation. Please see the attached document in the Background Material section for further details on the justification of the read across approach.
Applicant's summary and conclusion
- Conclusions:
- Interpretation of results (migrated information):
negative
The source material was considered to be non-mutagenic under the conditions of this test. The Source substance has a comprehensive data set generated for a REACH Annex VIII registration and this along with its similarity to the Target substance are considered sufficient to consider the read-across an appropriate adaptation to the standard information requirements of Annex VII of the REACH regulation for the Target substance in accordance with the provisions of Annex XI, 1.5 of the REACH regulation. Please see the attached document in the Background Material section for further details on the justification of the read across approach. - Executive summary:
Introduction:
The test method was designed to be compatible with the guidelines for bacterial mutagenicity testing published by the major Japanese Regulatory Authorities including METI, MHLW and MAFF, the OECD Guidelines for Testing of Chemicals No. 471 "Bacterial Reverse Mutation Test", Method B13/14 of Commission Regulation (EC) number 440/2008 of 30 May 2008, 40 CFR 799.9510 TSCA bacterial reverse mutation test and the USA, EPA (TSCA) OCSPP harmonized guidelines.
This read-across is based on the hypothesis that the Source and Target substances will have similar toxicological and ecotoxicological properties due to their close physical-chemical and structural similarities. For example, both the Source and Target substances are monoconstituents which share structural similarities and contain the same functional groups (thio ether, sulfonate, vicinal nitrile groups).
Methods:….
Salmonella typhimurium strains TA1535, TA1537, TA98 and TA100 and Escherichia coli strain WP2uvrA were treated with the test item (source) using both the Ames plate incorporation and pre‑incubation methods at up to eight dose levels, in triplicate, both with and without the addition of a rat liver homogenate metabolizing system (10% liver S9 in standard co-factors). The dose range for Experiment 1 was pre-determined and was 1.5 to 5000 µg/plate. The experiment was repeated on a separate day (pre-incubation method) using fresh cultures of the bacterial strains and fresh test item formulations. The dose range was amended following the results of Experiment 1and was 50 to 5000 µg/plate.
Results:…….
The vehicle (sterile distilled water) control plates gave counts of revertant colonies within the normal range. All of the positive control chemicals used in the test induced marked increases in the frequency of revertant colonies, both with or without metabolic activation. Thus, the sensitivity of the assay and the efficacy of the S9-mix were validated.
The test item (source) caused no visible reduction in the growth of the bacterial background lawn at any dose level and was, therefore, tested up to the maximum recommended dose level of 5000 µg/plate. No test item precipitate was observed on the plates at any of the doses tested in either
the presence or absence of S9-mix.
No significant increases in the frequency of revertant colonies were recorded for any of the bacterial strains, with any dose of the test item (source), either with or without metabolic activation or exposure method.
Conclusion:
The source test material was considered to be non-mutagenic under the conditions of this test. The Source substance has a comprehensive data set generated for a REACH Annex VIII registration and this along with its similarity to the Target substance are considered sufficient to consider the read-across an appropriate adaptation to the standard information requirements of Annex VII of the REACH regulation for the Target substance in accordance with the provisions of Annex XI, 1.5 of the REACH regulation. Please see the attached document in the Background Material section for further details on the justification of the read across approach.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.