Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Administrative data

Endpoint:
in vitro gene mutation study in bacteria
Remarks:
Type of genotoxicity: gene mutation
Type of information:
experimental study
Adequacy of study:
key study
Reliability:
1 (reliable without restriction)
Rationale for reliability incl. deficiencies:
other: Well performed GLP and OECD guideline study

Data source

Reference
Reference Type:
study report
Title:
Unnamed
Year:
2009
Report date:
2009

Materials and methods

Test guideline
Qualifier:
according to guideline
Guideline:
OECD Guideline 471 (Bacterial Reverse Mutation Assay)
Deviations:
no
GLP compliance:
yes
Type of assay:
bacterial reverse mutation assay

Test material

Constituent 1
Chemical structure
Reference substance name:
4-(3-methyl-5-oxo-4,5-dihydro-1H-pyrazol-1-yl)benzene-1-sulfonic acid
EC Number:
201-901-3
Cas Number:
89-36-1
Molecular formula:
C10H10N2O4S
IUPAC Name:
4-(3-methyl-5-oxo-4,5-dihydro-1H-pyrazol-1-yl)benzene-1-sulfonic acid

Method

Species / strain
Species / strain / cell type:
other: TA 1535, TA 1537, TA 98, TA 100, WP2 uvrA
Metabolic activation:
with and without
Metabolic activation system:
Phenobarbital/ß-Naphthoflavone induced rat liver S9
Test concentrations with justification for top dose:
3, 10; 33; 100; 333; 1000; 2500; and 5000 µg/plate / pre-experiment/experiment I (plate incorporation)
33; 100; 333; 1000; 2500; and 5000 µg/plate / experiment II (preincubation)
Vehicle / solvent:
- Vehicle(s)/solvent(s) used: DMSO

- Justification for choice of solvent/vehicle: The solvent was chosen because of its solubility properties and its relative non-toxicity to the bacteria
Controls
Untreated negative controls:
yes
Negative solvent / vehicle controls:
yes
True negative controls:
no
Positive controls:
yes
Positive control substance:
other: sodium azide; 4-nitro-o-phenylene-diamine; methyl methane sulfonate, 2-aminoanthracene
Details on test system and experimental conditions:
METHOD OF APPLICATION: in agar (plate incorporation); preincubation;


DURATION
- Preincubation period: 1 hour
- Exposure duration: 72 hours


NUMBER OF REPLICATIONS: The assay was performed in two independent experiments. Each concentration and the controls were tested in triplicate.


DETERMINATION OF CYTOTOXICITY
A reduction in the number of spontaneous revertants (below the induction factor of 0.5) or a clearing of the bacterial background lawn.

Evaluation criteria:
A test item is considered as a mutagen if a biologically relevant increase in the number of revertants exceeding the threshold of twice (strains TA 98, TA 100, and WP2 uvrA) or thrice (strains TA 1535 and TA 1537) the colony count of the corresponding solvent control is observed.
A dose dependent increase is considered biologically relevant if the threshold is exceeded at more than one concentration.
An increase exceeding the threshold at only one concentration is judged as biologically relevant if reproduced in an independent second experiment.
A dose dependent increase in the number of revertant colonies below the threshold is regarded as an indication of a mutagenic potential if reproduced in an independent second experiment. However, whenever the colony counts remain within the historical range of negative and solvent controls such an increase is not considered biologically relevant.
Statistics:
According to the OECD guideline 471, a statistical analysis of the data is not mandatory.

Results and discussion

Test results
Species / strain:
other: TA 1535, TA 1537, TA 98, TA 100, WP2 uvrA
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity
Vehicle controls validity:
valid
Untreated negative controls validity:
not examined
Positive controls validity:
valid
Additional information on results:
TEST-SPECIFIC CONFOUNDING FACTORS

- Precipitation: No precipitation was observed up to the highest concentration
- Other confounding effects:
COMPARISON WITH HISTORICAL CONTROL DATA: performed
ADDITIONAL INFORMATION ON CYTOTOXICITY: No toxic effects were observed up to the highest concentration
Remarks on result:
other: other: reverse mutation assay
Remarks:
Migrated from field 'Test system'.

Applicant's summary and conclusion

Conclusions:
Interpretation of results (migrated information):
negative

In conclusion, it can be stated that during the described mutagenicity test and under the experimental conditions reported, the test item did not induce gene mutations by base pair changes or frameshifts in the genome of the strains used.
Executive summary:

The test item was assessed for its potential to induce gene mutations in the plate incorporation test (experi­ment I) and the pre-incubation test (experiment II) using Salmo­nella typhimurium strains TA 1535, TA 1537, TA 98, and TA 100, and the Escheri­chia coli strain WP2 uvrA.

The assay was performed in two independent experiments both with and without liver microsomal activation. Each concentration and the controls were tested in triplicate. The test item was tested at the following concentrations:

Pre-Experiment/Experiment I:           3; 10; 33; 100; 333; 1000; 2500; and 5000 µg/plate

Experiment II:                                   33; 100; 333; 1000; 2500; and 5000 µg/plate

The plates incubated with the test item showed normal background growth up to 5000 µg/plate with and without metabolic activation in both independent experiments.

No toxic effects, evident as a reduction in the number of revertants (below the indication factor of 0.5), occurred in the test groups with and without metabol­ic activation.

No substantial increase in revertant colony numbers of any of the five tester strains was observed following treatment with the test item at any dose level, neither in the presence nor absence of metabolic activation (S9 mix). There was also no tendency of higher mutation rates with increasing concentrations in the range below the generally acknowledged border of biological relevance.

Appropriate reference mutagens were used as positive controls. They showed a distinct in­crease of induced revertant colonies.

In conclusion, it can be stated that during the described mutagenicity test and under the experimental conditions reported, the test item did not induce gene mutations by base pair changes or frameshifts in the genome of the strains used.