Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 258-436-4 | CAS number: 53220-22-7
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Basic toxicokinetics
Administrative data
- Endpoint:
- basic toxicokinetics, other
- Remarks:
- Expert statement
- Type of information:
- other: Expert statement
- Adequacy of study:
- key study
- Study period:
- 2019
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- other: Expert statement, no study available
Data source
Reference
- Reference Type:
- other: Expert statement
- Title:
- Unnamed
- Year:
- 2 020
- Report date:
- 2020
Materials and methods
Test guideline
- Qualifier:
- no guideline followed
- Principles of method if other than guideline:
- Expert statement
- GLP compliance:
- no
Test material
- Reference substance name:
- Ditetradecyl peroxydicarbonate
- EC Number:
- 258-436-4
- EC Name:
- Ditetradecyl peroxydicarbonate
- Cas Number:
- 53220-22-7
- Molecular formula:
- C30H58O6
- IUPAC Name:
- 1-[({[(tetradecyloxy)carbonyl]peroxy}carbonyl)oxy]tetradecane
- Test material form:
- solid
Constituent 1
Test animals
- Details on test animals or test system and environmental conditions:
- not applicable
Administration / exposure
- Details on exposure:
- not applicable
- Duration and frequency of treatment / exposure:
- not applicable
Doses / concentrations
- Remarks:
- not applicable
- No. of animals per sex per dose / concentration:
- not applicable
- Positive control reference chemical:
- not applicable
- Details on study design:
- not applicable
- Details on dosing and sampling:
- not applicable
- Statistics:
- not applicable
Results and discussion
Toxicokinetic / pharmacokinetic studies
- Details on absorption:
- Generally, oral absorption is limited for molecular weights above 500 g/mol. Due to the lipophilic properties and the low water solubility of ditetradecyl peroxydicarbonate, dissolution in the gastro-intestinal fluids is limited and absorption through the mucosal surface is estimated to be slow. On the other hand, absorption of ditetradecyl peroxydicarbonate may be facilitated following micellular solubilisation by bile salts. Micelles enter the systemic circulation via the lymphatic system, bypassing the liver.
No systemic effects were observed after single and repeated administration of ditetradecyl peroxydicarbonate on rats leading to the following discussion points:
On the one hand, the potential to induce toxic effects of ditetradecyl peroxydicarbonate might be low as the potential decomposition products, myristyl alcohol and carbon dioxide, occur physiologically. On the other hand, no observed effects could be a result of no absorption. In conclusion, bioavailability after oral administration is expected to be low.
As ditetradecyl peroxydicarbonate is a solid at room temperature, it might reach the respiratory tract in its dust state. However, due to the particle size of 1000 to 4000 µm the respirable airborne fraction is negligible. Particles might deposit in the nasal region and would be sneezed out or coughed up. No absorption through the respiratory tract epithelium is expected as dissolution in the mucus is limited by the lipophilic properties and low water solubility of ditetradecyl peroxydicarbonate. Since no specific effects of systemic toxicity were observed after oral administration systemic availability is unlikely also after inhalation exposure.
Similarly, based on physico-chemical properties of ditetradecyl peroxydicarbonate the substance is not likely to penetrate through the skin to a large extent as the high log Pow value and the low water solubility do not favour dermal penetration. It is generally accepted that if a compound’s water solubility is < 1 mg/L, absorption can be anticipated to be low. Moreover, for substances with a log Pow above 6, the rate of penetration is limited by both uptake into the stratum corneum and transfer into the epidermis. However, as ditetradecyl peroxydicarbonate has been identified as a skin sensitiser in a LLNA study, penetration through the skin must have occurred although only to a small fraction of the applied dose. - Details on distribution in tissues:
- Assuming that a small fraction of ditetradecyl peroxydicarbonate is absorbed into the body following oral intake, it may be distributed mainly via the lymphatic system. The volume of distribution is estimated to be low and diffusion across cell membranes is limited by the molecular weight and lipophilic properties of the substance.
The potential decomposition product, myristyl alcohol and rather its oxidised form, myristic acid, were shown to bind to serum albumin to facilitate circulation via the bloodstream (Curry, S. et al, 1999).
Based on the BCF value of ditetradecyl peroxydicarbonate and the physiologically occurrence of its potential decomposition products bioaccumulation of the substance in the body can be excluded.
- Details on excretion:
- As discussed above, absorption of ditetradecyl peroxydicarbonate is limited by the compound’s high lipophilicity and low water solubility. Therefore, ditetradecyl peroxydicarbonate might be directly excreted from the gastro-intestinal tract via faeces.
Once absorbed and transported to the liver, ditetradecyl peroxydicarbonate is expected to be biliary excreted due to its high molecular weight. In case of the decomposition product of ditetradecyl peroxydicarbonate, myristyl alcohol, degradation to carbon dioxide and excretion via the exhaled air is assumed.
Metabolite characterisation studies
- Details on metabolites:
- Based on the structure of the molecule, decomposition to myristyl alcohol and carbon dioxide might occur to a little extent. Myristyl alcohol is expected to be oxidised to myristic acid which in turn might enter the mitochondrial β-oxidation pathway. Generally, physiologically occurring myristic acid is incorporated in the phospholipid bilayer of the plasma membrane.
Thus, metabolites are not assumed to be more toxic than the parent compound which is further supported by the results obtained in the in vitro mutation and cytogenetic assays in the presence of a metabolic activation system.
Bioaccessibility (or Bioavailability)
- Bioaccessibility (or Bioavailability) testing results:
- Physico-chemical properties and experimental data indicate a very low bioavailability of ditetradecyl peroxydicarbonate via oral, dermal and inhalation route.
Applicant's summary and conclusion
- Conclusions:
- Physico-chemical properties, particularly water solubility and octanol-water partition coefficient and experimental data indicate a very low bioavailability of ditetradecyl peroxydicarbonate via oral, dermal and inhalation route. Assuming that a small fraction of ditetradecyl peroxydicarbonate is absorbed into the body following oral intake, it may be distributed mainly via the lymphatic system. Based on the structure of the molecule, decomposition to myristyl alcohol and carbon dioxide might occur to a little extent. Myristyl alcohol is expected to be oxidised to myristic acid which in turn might enter the mitochondrial β-oxidation pathway. The non-absorbed fraction of ditetradecyl peroxydicarbonate might be directly excreted from the gastro-intestinal tract via faeces. Once absorbed and transported to the liver, ditetradecyl peroxydicarbonate is expected to be biliary excreted due to its high molecular weight. In case of the decomposition product, myristyl alcohol, degradation to carbon dioxide and excretion via the exhaled air is assumed.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.