Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 231-974-7 | CAS number: 7783-00-8
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Key value for chemical safety assessment
Additional information
Only one study rated as reliable (with restriction) is available for selenous acid.
Itoh (1996) described the induction of micronuclei in the bone marrow of mice following i.p. exposure towards selenous acid (H2SeO3). A significant increase in micronucleated cells was observed, with a clear positive finding in the maximum dose of 5 mg/kg. All lower dose levels were in the range of the control (0.0-0.3% MNPCE). However, the dose selection was not clearly justified and a description of the toxic effects is lacking. As stated below one might speculate that the maximum dose already showed signs of near-lethal toxicity, making this positive finding of questionable biological significance. Due to reporting deficiencies this reference will only be used as supportive information.
The findings in the in vivo test for selenites (Itoh, 1996) indicate that positive findings are only obtained at very high, near lethal doses.
Furthermore, an overwhelming database of positive findings for other selenium compounds in in vitro tests was identified during the literature search and in the ATSDR (2003). However, especially for metal compounds false positive findings have repeatedly been published which, can be attributed to osmolality or pH instead of genotoxic effects exerted by the metal ion itself and are therefore of limited biological relevance.
Furthermore, the risk assessment document published by the European Food Safety Authority (EFSA, 2006) summarise the genotoxic effects of selenium compounds as follows: “In vivo, only toxic amounts were shown to be active, keeping in mind the central role of hydrogen selenide in the metabolism of most selenium compound it is likely that overproduction of this and other auto-oxidisable selenium metabolites could promote the formation of DNA reactive oxygen radicals. [...] Genotoxicity has been seen in a number of in vitro systems and also in vivo at toxic doses. It is likely, however, that these effects may be related to the generation of reactive oxygen radicals, being dose dependent and showing a threshold in vivo and not occurring at nutritionally adequate intakes.”
Based on the above given information it can be concluded that in vivo clastogenic effects may occur at high, nearly lethal doses which are not attributable to exposure conditions for workers, consumers and humans exposed via the environment. Thus, this effect is considered of no biological relevance for humans.
References
ATSDR (2003). Agency for toxic substances and disease registry. Toxicological profile for selenium. U.S. Department of Health and Human Services, Public Health Services, Atlanta, Georgia.
Selenium, In: European Food Safety Authority (EFSA) (2006) Tolerable upper intake levels for vitamins and minerals, page 65f.
Endpoint Conclusion:
Justification for classification or non-classification
Only one reliable study is available for selenous acid and these data should only be used as supportive information. The effect observed in this study is considered of no biological relevance for humans. The classification criteria according to regulation (EC) 1272/2008 are not
met, and no classification is required for selenous acid.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.