Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 246-186-9 | CAS number: 24347-58-8
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Basic toxicokinetics
Administrative data
- Endpoint:
- basic toxicokinetics in vitro / ex vivo
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Study period:
- 1993
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- study well documented, meets generally accepted scientific principles, acceptable for assessment
Data source
Reference
- Reference Type:
- publication
- Title:
- Unnamed
- Year:
- 1 993
Materials and methods
- Objective of study:
- absorption
- metabolism
Test guideline
- Qualifier:
- no guideline followed
- Principles of method if other than guideline:
- The study investigated the metabolism of the individual isomers of 2,3-butanediol (2R,3R-, 2S,3S-, meso-2,3-butanediol and racemic 2,3-butanediol) in perfused livers from fed rats.
- GLP compliance:
- no
Test material
- Reference substance name:
- (R,R)-(-)-butane-2,3-diol
- EC Number:
- 246-186-9
- EC Name:
- (R,R)-(-)-butane-2,3-diol
- Cas Number:
- 24347-58-8
- Molecular formula:
- C4H10O2
- IUPAC Name:
- (R,R)-(-)-butane-2,3-diol
- Test material form:
- liquid
Constituent 1
- Specific details on test material used for the study:
- - 2R,3R (levo) and 2S,3S (dextro) 2,3-butanediol were obtained from Aldrich Chemical Co.
- Racemic 2,3-butanediol was purchased from Pfaltz and Bauer, Waterbury, CN.
- Meso-2,3-butanediol was obtained from Fluka Chemical Corp., Ronkonkoma, NY. - Radiolabelling:
- yes
- Remarks:
- 2H, 14C
Test animals
- Species:
- rat
- Strain:
- Sprague-Dawley
- Sex:
- male
- Details on test animals or test system and environmental conditions:
- For liver perfusion experiments:
Male Sprague-Dawley rats (Charles River Laboratories) were fed ad libitum with Purina rat chow. For the series of liver perfusions with unlabelled isomers of butanediol, the rats weighed 210-300 g. For the series of perfusions with radio labelled butanediols, the rats weighed 160-210 g.
Administration / exposure
- Route of administration:
- other: ex vivo (liver perfusion)
- Statistics:
- Data were analysed by one-way ANOVA, followed by the Bonferroni test to identify significant differences between groups. Perfusions with labelled 2,3-butanediol were analysed separately from perfusions with unlabelled 2,3-butanediol because of the difference in weights of rats. Significance level was set to p < 0.05.
Results and discussion
Main ADME resultsopen allclose all
- Type:
- absorption
- Results:
- Uptake of the 2,3-butanediol isomers decrease in the order: levo > meso > dextro.
- Type:
- metabolism
- Results:
- Levo and meso 2,3-butanediol metabolise to acetate, R-3-hydroxybutyrate and CO2, suggesting that 2,3- butanediol is oxidized to acetyl-coA via acetoin.
Toxicokinetic / pharmacokinetic studies
- Details on absorption:
- Analysis of control liver perfusates from fed rats indicated that any endogenous production of 2,3-butanediol or acetoin was below LOD of the assay (1 µM). In a preliminary perfusion experiment with 20 mM ethanol, neither acetoin nor butane-2,3-diol was produced during the first hour. However, when 5 mM pyruvate was added, acetoin and 2,3-butanediol accumulated up to 15 µM over the second hour. Presence or absence of butane-2,3-diol isomers did not affect the uptake rate of any individual isomer.
Metabolite characterisation studies
- Metabolites identified:
- yes
- Details on metabolites:
- Differences were observed in the metabolism of individual 2,3-butanediol isomers in perfused rat liver. Interconversion of isomers and oxidation to acetoin was observed with levo and meso, but not with dextro 2,3-butanediol.
In liver perfusions with either levo or meso (radiolabelled) 2,3-butanediol, the substrates were converted to labelled acetate, R-3-hydroxybutyrate and CO2, suggesting that 2,3-butanediol was oxidized to acetyl-CoA via acetoin. Production of radio-labelled CO2, acetate, ketone bodies, acetoin, and other isomers of butane-2,3-diol accounted for approximately one-third of the label uptake.
Applicant's summary and conclusion
- Conclusions:
- Absorption: Uptake of 2,3-butanediol isomers decrease in the order: levo > meso > dextro.
Metabolism: Levo and meso 2,3-butanediol metabolise to acetate, R-3-hydroxybutyrate and CO2, suggesting that 2,3- butanediol is oxidized to acetyl-coA via acetoin. - Executive summary:
Montgomery et al. 1993 investigated the metabolism of the individual isomers of 2,3 -butanediol (levo (2R,3R), dextro (2S,3S), meso 2,3 -butanediol and racemic 2,3 -butanediol) in perfused livers from fed rats. Differences were observed in the metabolism of individual 2,3-butanediol isomers in perfused rat liver. Interconversion of isomers and oxidation to acetoin was observed with the levo and meso forms, but not with dextro 2,3-butanediol. In liver perfusions with either levo or meso (radio-labelled) 2,3-butanediol, the substrates were converted to labelled acetate, R-3-hydroxybutyrate and CO2, suggesting that 2,3-butanediol was oxidized to acetyl-CoA via acetoin.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.