Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 279-899-9 | CAS number: 82089-64-3
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Genetic toxicity: in vitro
Administrative data
- Endpoint:
- in vitro gene mutation study in bacteria
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Study period:
- 02-12-2016 to 24-01-2017
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- guideline study
Data source
Reference
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 2 017
- Report date:
- 2017
Materials and methods
Test guidelineopen allclose all
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 471 (Bacterial Reverse Mutation Assay)
- Version / remarks:
- 1997
- Qualifier:
- according to guideline
- Guideline:
- EU Method B.13/14 (Mutagenicity - Reverse Mutation Test Using Bacteria)
- Version / remarks:
- 30 May 2008
- Qualifier:
- according to guideline
- Guideline:
- EPA OPPTS 870.5100 - Bacterial Reverse Mutation Test (August 1998)
- Qualifier:
- according to guideline
- Guideline:
- other: Japanese Ministry of Economy, Trade and Industry, Japanese Ministry of Health, Labour and Welfare and Japanese Ministry of Agriculture, Forestry and Fisheries.
- GLP compliance:
- yes (incl. QA statement)
- Type of assay:
- bacterial reverse mutation assay
Test material
- Reference substance name:
- (ethyl acetoacetato-O1',O3)(pentane-2,4-dionato-O,O')[propane-1,3-diolato(2-)-O,O']titanium
- EC Number:
- 279-899-9
- EC Name:
- (ethyl acetoacetato-O1',O3)(pentane-2,4-dionato-O,O')[propane-1,3-diolato(2-)-O,O']titanium
- Cas Number:
- 82089-64-3
- Molecular formula:
- C14H22O7Ti
- IUPAC Name:
- 13-ethoxy-8,10,15-trimethyl-1λ³,5λ³-dioxa-7λ³,11λ³,12,16-tetraoxa-6-titanaspiro[5.5⁶.5⁶]hexadeca-7,10-diene-6,6,6,6-tetrakis(ylium)-1,5,9,14-tetraide
- Test material form:
- liquid: viscous
Constituent 1
Method
Species / strainopen allclose all
- Species / strain / cell type:
- S. typhimurium TA 1535, TA 1537, TA 98 and TA 100
- Species / strain / cell type:
- E. coli WP2 uvr A
- Metabolic activation:
- with and without
- Metabolic activation system:
- S9-mix
- Test concentrations with justification for top dose:
- Experiment 1 Plate Incorporation Method: 1.5, 5, 15, 50, 150, 500, 1500 and 5000 µg/plate
Experiment 2 Pre-Incubation Method: 15, 50, 150, 500, 1500, 5000 µg/plate - Vehicle / solvent:
- dimethyl sulphoxide
Controlsopen allclose all
- Untreated negative controls:
- yes
- Negative solvent / vehicle controls:
- yes
- Remarks:
- dimethyl sulphoxide
- Positive controls:
- yes
- Positive control substance:
- N-ethyl-N-nitro-N-nitrosoguanidine
- Positive controls:
- yes
- Positive control substance:
- 9-aminoacridine
- Positive controls:
- yes
- Positive control substance:
- 4-nitroquinoline-N-oxide
- Positive controls:
- yes
- Positive control substance:
- benzo(a)pyrene
- Positive controls:
- yes
- Positive control substance:
- other: 2-Aminoanthracene (2AA)
- Details on test system and experimental conditions:
- - Test for Mutagenicity: Experiment 1 - Plate Incorporation Method
8 concentrations of the test item (1.5, 5, 15, 50, 150, 500, 1500 and 5000 µg/plate) were assayed in triplicate against each tester strain, using the direct plate incorporation method.
Without Metabolic Activation:
0.1 mL of the appropriate concentration of test item, solvent vehicle or appropriate positive control was added together with 0.1 mL of one of the bacterial strain cultures and 0.5 mL of phosphate buffer to 2 mL of molten, trace amino-acid supplemented media containing. These were then mixed and overlayed onto a Vogel-Bonner agar plate. Negative (untreated) controls were also performed on the same day as the mutation test. Each concentration of the test item, appropriate positive, vehicle and negative controls, and each bacterial strain, was assayed using triplicate plates.
With Metabolic Activation:
The procedure was the same as described above, except that following the addition of the test item formulation and bacterial culture, 0.5 mL of S9-mix was added to the molten, trace amino-acid supplemented media instead of phosphate buffer.
All of the plates were incubated at 37 ± 3 °C for approximately 48 hours and scored for the presence of revertant colonies using an automated colony counting system. The plates were viewed microscopically for evidence of thinning (toxicity).
- Test for Mutagenicity: Experiment 2 – Pre-Incubation Method
6 concentrations of the test item (15, 50, 150, 500, 1500 and 5000 µg/plate) were assayed.
Without Metabolic Activation:
0.1 mL of the appropriate bacterial strain culture, 0.5 mL of phosphate buffer and 0.1 mL of the test item formulation, solvent vehicle or 0.1 mL of appropriate positive control were incubated at 37 ± 3 °C for 20 minutes (with shaking) prior to addition of 2 mL of molten, trace amino-acid supplemented media and subsequent plating onto Vogel-Bonner plates. Negative (untreated) controls were also performed on the same day as the mutation test employing the plate incorporation method. All testing for this experiment was performed in triplicate.
With Metabolic Activation:
The procedure was the same as described above, except that following the addition of the test item formulation and bacterial strain culture, 0.5 mL of S9-mix was added to the tube instead of phosphate buffer, prior to incubation at 37 ± 3 °C for 20 minutes and addition of molten, trace amino-acid supplemented media. All testing for this experiment was performed in triplicate.
All of the plates were incubated at 37 ± 3 °C for approximately 48 hours and scored for the presence of revertant colonies using an automated colony counting system. The plates were viewed microscopically for evidence of thinning (toxicity) - Evaluation criteria:
- test item is considered non-mutagenic (negative) in the test system if the blew criteria are not met.
1. A dose-related increase in mutant frequency over the dose range tested (De Serres and Shelby, 1979).
2. A reproducible increase at one or more concentrations.
3. Biological relevance against in-house historical control ranges.
4. Statistical analysis of data as determined by UKEMS (Mahon et al., 1989).
5. Fold increase greater than two times the concurrent solvent control for any tester strain (especially if accompanied by an out-of-historical range response (Cariello and Piegorsch, 1996)). - Statistics:
- Statistical significance was confirmed by using Dunnetts Regression Analysis (* = p < 0.05)
Results and discussion
Test resultsopen allclose all
- Species / strain:
- S. typhimurium TA 100
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Species / strain:
- S. typhimurium TA 1535
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Species / strain:
- S. typhimurium TA 1537
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Species / strain:
- S. typhimurium TA 98
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Species / strain:
- E. coli WP2 uvr A
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Additional information on results:
- After employing the pre-incubation modification in the second mutation test a greasy looking precipitate was noted at and above 1500 µg/plate, this observation did not interfere with the scoring of revertant colonies.
A small, statistically significant increase in TA1537 revertant colony frequency was observed in the absence of S9-mix at 500 µg/plate in the second mutation test. This increase was considered to be of no biological relevance because there was no evidence of a dose-response relationship or reproducibility
Applicant's summary and conclusion
- Conclusions:
- The test item was considered to be non-mutagenic under the conditions of this test.
- Executive summary:
The test item was considered to be non-mutagenic under the conditions of this test.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.