Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 480-450-6 | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Boiling point
Administrative data
- Endpoint:
- boiling point
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Study period:
- 2009
- Reliability:
- 1 (reliable without restriction)
Data source
Reference
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 2 009
Materials and methods
Test guidelineopen allclose all
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 103 (Boiling point/boiling range)
- Qualifier:
- according to guideline
- Guideline:
- EU Method A.2 (Boiling Temperature)
- GLP compliance:
- yes (incl. QA statement)
Test material
Reference
- Name:
- Unnamed
- Type:
- Constituent
- Details on test material:
- Batch number : 29882/M1
Chemical class : Botanical extract
Preparation date : April 2009
Expiry date : April 2011
The test article was stored at room temperature in the dark.
Results and discussion
Any other information on results incl. tables
Following a preliminary analysis, the AISI crucible was employed to investigate in detail the various changes which occurred on heating to the sample.
The AISI type of crucible is suitable for the accurate determination of melting transition up to. The test was then performed with an AISI crucible in a temperature rangefrom 30 towith a heating rate of 5°C/min.
The following behaviour was noted.
130 - 145°C an endothermicdeparture showing a probable melting transition of the main component present in the test article
145 - 300°C the baseline increased and became unstable showing a probable non homogeneous decomposition phenomena
Applicant's summary and conclusion
- Conclusions:
- It is not possible to obtain a well defined boiling point for Sesbania Grandiflora Dry Purified Extract sample; a melting transition of the main component was detected from 130 to 145 °C, followed to probable concurrent decomposition phenomena.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.

EU Privacy Disclaimer
This website uses cookies to ensure you get the best experience on our websites.