Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 947-513-4 | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Adsorption / desorption
Administrative data
Link to relevant study record(s)
- Endpoint:
- adsorption / desorption: screening
- Type of information:
- read-across from supporting substance (structural analogue or surrogate)
- Adequacy of study:
- key study
- Justification for type of information:
- 1. HYPOTHESIS FOR THE ANALOGUE APPROACH
The source substance is the racemic form of the target substance d-tetramethrin. Tetramethrin does consist of 50% d- and l-form, and both do exist as cis and trans isomers. Hence, the target substance does consist of d-cis-tetramethrin, d-trans-tetramethrin, l-cis-tetramethrin and l-trans-tetramethrin, whereas the target substance only contains the first two (i.e. d-cis-tetramethrin, d-trans-tetramethrin).
Both, the source as well as the target substance, do have a cis/trans ratio of approximately 1/4 and obviously do share same molecular formula and mass, functional groups and other properties. Thus, the source substance by definition does contain ~50% of the d-form and the l-form is not expected to be significantly different with respect to its adsorption/desorption properties. Adsorption/desorption behaviour of the l-form is expected being identical to the d-form, that makes up half of the substance tested (racemic form) and thus, the results from the racemic form is expected being not different from that of the d-tetramethrin. Accordingly, data do indicate that racemic tetramethrin and thus also d-tetramethrin is immobile with a high adsorption to soil and results available are sufficient for hazard and risk assessment.
2. SOURCE AND TARGET CHEMICAL(S) (INCLUDING INFORMATION ON PURITY AND IMPURITIES)
The d-tetramethrin with a purity > 80 % does contain its corresponding l-form as an impurity in the range of < 7%, other impurities from the manufacturing process are individually below 1% (w/w) each. The source substance that has been tested was having a purity of approx. 98% as tetramethrin with a cis/trans ratio of 1/4 and a d-form/l-form ratio of ~50/50.
3. ANALOGUE APPROACH JUSTIFICATION
Source and Target substance do share identical structure and molecular weight, only differentiating by the fact that the source substance is a racemic mixture, whereas the target substance represents almost pure d-form. Thus, behaviour regarding adsorption/desorption is expected not being affected significantly by stereochemistry, and being fully comparable, thus justifying using available data on adsorption/desorption properties on the racemic form for supportive read-across to the d-enantiomer. Even difference seen between the cis and trans isomers have been rather low and thus no significant differences for enantiomers are expected.
4. DATA MATRIX
Composition comparison
D-tetramethrin (target) tetramethrin (source)
D-trans tetramethrin 70 - 80% 40 – 50%
D-cis tetramethrin 10 - 20% 7 – 11 %
L-trans tetramethrin 0 – 5% 35 – 40%
L-cis tetramethrin 0 – 2% 7 – 11% - Reason / purpose for cross-reference:
- read-across source
- Sample No.:
- #1
- Type:
- log Koc
- Value:
- 3.3 dimensionless
- pH:
- 6.7
- Temp.:
- 25 °C
- Sample No.:
- #2
- Type:
- log Koc
- Value:
- 3.4 dimensionless
- pH:
- 6.7
- Temp.:
- 25 °C
- Conclusions:
- Tetramethrin is immobile and remains preferably in soil, supported by a Koc determined being 2045 (log Koc 3.3) and 2754 (log Koc 3.4) at 25 °C and pH 6.7. The two values were attributed to cis- and trans-isomers, but d- and l-enantiomers could not be differentiated, in that the tetramethrin data are considered representative for d-tetramethrin too.
Reference
Description of key information
The determination of the adsorption coefficient (Koc) of TETRAMETHRIN was performed according to the OECD Guideline for the Testing of Chemicals, No. 121, Estimation of the Adsorption Coefficient (Koc) on Soil and Sewage Sludge using High Performance Liquid Chromatography (HPLC).
The log of the adsorption coefficient (Koc) of TETRAMETHRIN was estimated to be
1. Peak:
log Koc = 3.3 which is equal to
a Koc value of 2045 (1. Peak)
and
log Koc = 3.4 which is equal to
a Koc value of 2754 (2. Peak),
using the HPLC method. This values indicates that tetramethrin is immobile and remains preferably in soil.
Key value for chemical safety assessment
- Koc at 20 °C:
- 3.3
Additional information
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.