Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 604-305-5 | CAS number: 142680-85-1
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Key value for chemical safety assessment
Genetic toxicity in vitro
Description of key information
An Ames study (Thompson, 1998) is available which is key study. It is concluded that the test substance is not mutagenic in the bacterial reverse mutation assay.
Link to relevant study records
- Endpoint:
- in vitro gene mutation study in bacteria
- Remarks:
- Type of genotoxicity: gene mutation
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Study period:
- From 16 Feb to 19 Mar 1998
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- other: Study run to a method comparable with current guidelines and to GLP.
- Qualifier:
- equivalent or similar to guideline
- Guideline:
- OECD Guideline 471 (Bacterial Reverse Mutation Assay)
- Deviations:
- no
- GLP compliance:
- yes (incl. QA statement)
- Type of assay:
- bacterial reverse mutation assay
- Target gene:
- Histidine gene in S. typhimurium, tryptophan gene in E. coli
- Species / strain / cell type:
- S. typhimurium TA 1535, TA 1537, TA 98 and TA 100
- Species / strain / cell type:
- E. coli WP2 uvr A
- Metabolic activation:
- with and without
- Metabolic activation system:
- S9 mix
- Test concentrations with justification for top dose:
- Preliminary Toxicity Study: 50, 150, 500, 1500 and 5000 μg/plate
Experiment 1: 50, 150, 500, 1500 and 5000 μg/plate
Experiment 2: 50, 150, 500, 1500 and 5000 μg/plate - Vehicle / solvent:
- - Vehicle(s)/solvent(s) used: acetone
- Untreated negative controls:
- no
- Negative solvent / vehicle controls:
- yes
- True negative controls:
- no
- Positive controls:
- yes
- Positive control substance:
- N-ethyl-N-nitro-N-nitrosoguanidine
- Remarks:
- Without S9-mix for TA100, TA1535 and WP2uvrA strains.
- Untreated negative controls:
- no
- Negative solvent / vehicle controls:
- yes
- True negative controls:
- no
- Positive controls:
- yes
- Positive control substance:
- 9-aminoacridine
- Remarks:
- Without S9-mix for TA1537 strain.
- Untreated negative controls:
- no
- Negative solvent / vehicle controls:
- yes
- True negative controls:
- no
- Positive controls:
- yes
- Positive control substance:
- other: 4-Nitroquinoline-1-oxide (4NQO)
- Remarks:
- Without S9-mix for TA98 strain.
- Untreated negative controls:
- no
- Negative solvent / vehicle controls:
- yes
- True negative controls:
- no
- Positive controls:
- yes
- Positive control substance:
- other: 2-aminoanthracene
- Remarks:
- With S9-mix for TA 1535, TA 1537, TA 98, TA 100 and WP2uvrA strains.
- Details on test system and experimental conditions:
- METHOD OF APPLICATION:in agar (plate incorporation)
- Preliminary Toxicity Study: In order to select appropriate dose levels for use in the main study, a preliminary test was carried out to determine the toxicity material. Five concentrations of the test material formulation and a vehicle control (acetone) were tested in duplicate.
- Experiment 1: Five concentrations of the test material were assayed in triplicate against each tester strain, using the direct plate incorporation method. Measured aliquots (0.1 mL) of one of the bacterial cultures were dispensed into sets of test tubes followed by 2.0 mL of molten, trace histidine or tryptophan supplemented, top agar, 0.1 mL of the test material formulation, vehicle or positive control and either 0.5 mL of S9-mix or phosphate buffer. The contents of each test tube were mixed and equally distributed onto the surface of Vogel-Bonner Minimal agar plates (one tube per plate). This procedure was repeated, in triplicate, for each bacterial strain and for each concentration of test material both with and without S9-mix. All of the plates were incubated at 37℃ for approximately 48 hours and the frequency of revertant colonies assessed using a Domino colony counter. Manual counts were performed at 5000 μg/plate because of a test material induced particulate precipitate.
- Experiment 2: The second experiment was performed using methodology as described for experiment 1, using fresh bacterial cultures, test material and control solutions. - Evaluation criteria:
- The test material may be considered to be positive in this test system if the following criteria are met:
The test material should have induced a reproducible, dose-related and statistically (Dunnett's method of linear regression) significant increase in the revertant count in at least one strain of bacteria. If a greater than twofold increase in revertant count is observed in two experiments then this is taken as evidence of a positive response. - Species / strain:
- S. typhimurium TA 1535, TA 1537, TA 98 and TA 100
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Positive controls validity:
- valid
- Species / strain:
- E. coli WP2 uvr A
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Positive controls validity:
- valid
- Additional information on results:
- Preliminary Toxicity Study
The dose range of the test material used in the preliminary toxicity study was 0, 50, 150, 500, 1500 and 5000 μg/plate. The test material was non-toxic to the strains of bacteria used (TA100 and WP2uvrA).
Mutation Study (Experiment 1 and Experiment 2)
Results for the negative controls (spontaneous mutation rates) were considered to be acceptable.
No toxicity was exhibited to any of the strains of bacteria used. A white, particulate precipitate was observed at and above 1500 μg/plate, this did not prevent the scoring of revertant colonies.
No significant increases in the frequency of revertant colonies were recorded for any of the strains of bacteria, at any dose level either with or without metabolic activation.
All of the positive control chemicals used in the test induced marked increases in the frequency of revertant colonies thus confirming the activity of the S9-mix and the sensitivity of the bacterial strains. - Remarks on result:
- other: all strains/cell types tested
- Remarks:
- Migrated from field 'Test system'.
- Conclusions:
- Interpretation of results (migrated information):
negative
The test material was considered to be non-mutagenic under the conditions of this test.
Reference
Endpoint conclusion
- Endpoint conclusion:
- no adverse effect observed (negative)
Additional information
Additional information from genetic toxicity in vitro:
An Ames study was conducted according to a method similar to OECD 471 using S.typhimurium and E. coli strains (Thompson, 1998). Key study.
It is concluded that the test substance is not mutagenic in the bacterial reverse mutation assay.
Justification for selection of genetic toxicity endpoint
This study was conducted according to a mothod similar to OECD 471 using S.typhimurium and E. coli strains.
Justification for classification or non-classification
Genetic toxicity in vitro: Negative result (Not mutagenic to S. typhimurium and E. coli strains).
Therefore in accordance with Regulation (EC) No. 1272/2008 Table 3.5.1 the substance is not classified for the genetic toxicity endpoint.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.