Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 260-555-1 | CAS number: 57082-24-3
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Description of key information
Hydrolysis
HYDROWIN v2.00 program of Estimation Programs Interface (EPI Suite, 2018) prediction model was used to predict the hydrolysis half-life of test compound (1R-(1alpha,2alpha,5beta,8beta))-4,4,8-Trimethyltricyclo[6.3.1.02,5]dodecanyl acetate (CAS No. 57082 -24 -3). The estimated half-life of (1R-(1alpha,2alpha,5beta,8beta))-4,4,8-Trimethyltricyclo[6.3.1.02,5]dodecanyl acetate was evaluated to be 6.497 yrs at pH 7.0 and 237.292 days at pH 8.0 (at 25ᵒC) respectively, indicating that it is not hydrolysable.
Additional information
Hydrolysis
Predicted data for the target chemical (1R-(1alpha,2alpha,5beta,8beta))-4,4,8-Trimethyltricyclo[6.3.1.02,5]dodecanyl acetate (CAS No. 57082-24-3) and supporting study from authoritative database for its read across substance were reviewed for the hydrolysis end point which are summarized as below:
In a prediction done using the HYDROWIN v2.00 program of Estimation Programs Interface (EPI Suite, 2018) prediction model was used to predict the hydrolysis half-life of test compound (1R-(1alpha,2alpha,5beta,8beta))-4,4,8-Trimethyltricyclo[6.3.1.02,5]dodecanyl acetate (CAS No. 57082 -24 -3). The estimated half-life of (1R-(1alpha,2alpha,5beta,8beta))-4,4,8-Trimethyltricyclo[6.3.1.02,5]dodecanyl acetate was evaluated to be 6.497 yrs at pH 7.0 and 237.292 days at pH 8.0 (at 25ᵒC) respectively, indicating that it is not hydrolysable.
For the read across chemical 1,1-dimethylethyl ester, acetic acid (CAS no. 540-88-5), the half-life and acid & base catalyzed hydrolysis rate constant of the test chemical 1,1-dimethylethyl ester, acetic acid (CAS no. 540-88-5) was determined at a temperature of 20°C (HSDB, 2017). The acid and based catalyzed hydrolysis rate constant of 1,1-dimethylethyl ester, acetic acid was determined to be 12600 & 0.0015 L/mol-sec, respectively with a corresponding half-lives of 135, 14.6 and 1.5 years at pH 7, 8 and 9, respectively. Based on the half-life values, it is concluded that the chemical 1,1-dimethylethyl ester, acetic acid is not hydrolysable.
On the basis of the above results for target chemical (1R-(1alpha,2alpha,5beta,8beta))-4,4,8-Trimethyltricyclo[6.3.1.02,5]dodecanyl acetate(from EPI suite, 2018) and for its read across substance (from authoritative database HSDB, 2017), it can be concluded that the target chemical (1R-(1alpha,2alpha,5beta,8beta))-4,4,8-Trimethyltricyclo[6.3.1.02,5]dodecanyl acetate is not hydrolysable.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.