Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 203-223-3 | CAS number: 104-65-4
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Biodegradation in water: screening tests
Administrative data
Link to relevant study record(s)
- Endpoint:
- biodegradation in water: screening tests
- Type of information:
- (Q)SAR
- Adequacy of study:
- weight of evidence
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- results derived from a valid (Q)SAR model and falling into its applicability domain, with limited documentation / justification
- Justification for type of information:
- The supporting QMRF report has been attached.
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 301 C (Ready Biodegradability: Modified MITI Test (I))
- Principles of method if other than guideline:
- The prediction was done by using OECD QSAR tool box v3.3
- GLP compliance:
- not specified
- Specific details on test material used for the study:
- - Name of test material: Cinnamyl formate
- IUPAC name: (2E)-3-phenylprop-2-en-1-yl formate
- Molecular formula: C10H10O2
- Molecular weight: 162.187 g/mole
- Smiles :c1(\C=C\COC=O)ccccc1
- Inchl: 1S/C10H10O2/c11-9-12-8-4-7-10-5-2-1-3-6-10/h1-7,9H,8H2/b7-4+
- Substance type: Organic
- Physical state: Liquid (Colorless to yellowish) - Oxygen conditions:
- aerobic
- Inoculum or test system:
- other: Microorganisms
- Duration of test (contact time):
- 28 d
- Parameter followed for biodegradation estimation:
- other: BOD
- Key result
- Parameter:
- other: BOD
- Value:
- 92.4
- Sampling time:
- 28 d
- Remarks on result:
- other: other details not available
- Validity criteria fulfilled:
- not specified
- Interpretation of results:
- readily biodegradable
- Conclusions:
- The test chemical (2E)-3-phenylprop-2-en-1-yl formate showed 92.40 % degradation by considering BOD as parameter and Microorganisms as inoculum in aerobic condition in 28 days.
- Executive summary:
Biodegradability of test chemical (2E)-3-phenylprop-2-en-1-yl formate (CAS no. 104 -65 -4) was determined by using OECD QSAR tool box v3.3 with log Kow as primary descriptor. The test chemical (2E)-3-phenylprop-2-en-1-yl formate showed 92.40 % degradation by considering BOD as parameter and Microorganisms as inoculum in aerobic condition in 28 days. On the basis of percent degradation value in 28 days it is concluded that this test chemical is readily biodegradable.
Reference
The
prediction was based on dataset comprised from the following
descriptors: BOD
Estimation method: Takes average value from the 5 nearest neighbours
Domain logical expression:Result: In Domain
((((((((((((("a"
or "b" or "c" )
and "d" )
and "e" )
and "f" )
and "g" )
and "h" )
and "i" )
and "j" )
and ("k"
and (
not "l")
)
)
and ("m"
and (
not "n")
)
)
and ("o"
and (
not "p")
)
)
and ("q"
and (
not "r")
)
)
and ("s"
and "t" )
)
Domain
logical expression index: "a"
Referential
boundary: The
target chemical should be classified as Formic acid and formates by OECD
HPV Chemical Categories
Domain
logical expression index: "b"
Referential
boundary: The
target chemical should be classified as Class 3 (unspecific reactivity)
by Acute aquatic toxicity classification by Verhaar (Modified)
Domain
logical expression index: "c"
Referential
boundary: The
target chemical should be classified as Esters by Acute aquatic toxicity
MOA by OASIS
Domain
logical expression index: "d"
Referential
boundary: The
target chemical should be classified as Not calculated by Biodeg BioHC
half-life (Biowin) ONLY
Domain
logical expression index: "e"
Referential
boundary: The
target chemical should be classified as Biodegrades Fast by Biodeg
probability (Biowin 1) ONLY
Domain
logical expression index: "f"
Referential
boundary: The
target chemical should be classified as Biodegrades Fast by Biodeg
probability (Biowin 2) ONLY
Domain
logical expression index: "g"
Referential
boundary: The
target chemical should be classified as Biodegrades Fast by Biodeg
probability (Biowin 5) ONLY
Domain
logical expression index: "h"
Referential
boundary: The
target chemical should be classified as Biodegrades Fast by Biodeg
probability (Biowin 6) ONLY
Domain
logical expression index: "i"
Referential
boundary: The
target chemical should be classified as Biodegrades Fast by Biodeg
probability (Biowin 7) ONLY
Domain
logical expression index: "j"
Referential
boundary: The
target chemical should be classified as days - weeks by Biodeg ultimate
(Biowin 3) ONLY
Domain
logical expression index: "k"
Referential
boundary: The
target chemical should be classified as No alert found by DNA binding by
OASIS v.1.3
Domain
logical expression index: "l"
Referential
boundary: The
target chemical should be classified as AN2 OR AN2 >> Shiff base
formation after aldehyde release OR AN2 >> Shiff base formation after
aldehyde release >> Specific Acetate Esters OR AN2 >> Shiff base
formation for aldehydes OR AN2 >> Shiff base formation for aldehydes >>
Haloalkane Derivatives with Labile Halogen OR Radical OR Radical >>
Generation of reactive oxygen species OR Radical >> Generation of
reactive oxygen species >> Thiols OR SN1 OR SN1 >> Nucleophilic attack
after carbenium ion formation OR SN1 >> Nucleophilic attack after
carbenium ion formation >> Specific Acetate Esters OR SN2 OR SN2 >>
Acylation OR SN2 >> Acylation >> Specific Acetate Esters OR SN2 >>
Acylation involving a leaving group OR SN2 >> Acylation involving a
leaving group >> Haloalkane Derivatives with Labile Halogen OR SN2 >>
Alkylation, nucleophilic substitution at sp3-carbon atom OR SN2 >>
Alkylation, nucleophilic substitution at sp3-carbon atom >> Haloalkane
Derivatives with Labile Halogen OR SN2 >> Nucleophilic substitution at
sp3 Carbon atom OR SN2 >> Nucleophilic substitution at sp3 Carbon atom
>> Specific Acetate Esters by DNA binding by OASIS v.1.3
Domain
logical expression index: "m"
Referential
boundary: The
target chemical should be classified as No alert found by DNA binding by
OECD
Domain
logical expression index: "n"
Referential
boundary: The
target chemical should be classified as Michael addition OR Michael
addition >> P450 Mediated Activation of Heterocyclic Ring Systems OR
Michael addition >> P450 Mediated Activation of Heterocyclic Ring
Systems >> Furans OR Michael addition >> P450 Mediated Activation to
Quinones and Quinone-type Chemicals OR Michael addition >> P450 Mediated
Activation to Quinones and Quinone-type Chemicals >> Arenes OR Michael
addition >> P450 Mediated Activation to Quinones and Quinone-type
Chemicals >> Hydroquinones OR Michael addition >> Polarised
Alkenes-Michael addition OR Michael addition >> Polarised
Alkenes-Michael addition >> Alpha, beta- unsaturated esters OR Schiff
base formers OR Schiff base formers >> Direct Acting Schiff Base Formers
OR Schiff base formers >> Direct Acting Schiff Base Formers >> Mono
aldehydes by DNA binding by OECD
Domain
logical expression index: "o"
Referential
boundary: The
target chemical should be classified as Non binder, without OH or NH2
group by Estrogen Receptor Binding
Domain
logical expression index: "p"
Referential
boundary: The
target chemical should be classified as Non binder, impaired OH or NH2
group OR Non binder, non cyclic structure by Estrogen Receptor Binding
Domain
logical expression index: "q"
Referential
boundary: The
target chemical should be classified as Group 14 - Carbon C AND Group 16
- Oxygen O by Chemical elements
Domain
logical expression index: "r"
Referential
boundary: The
target chemical should be classified as Group 15 - Nitrogen N by
Chemical elements
Domain
logical expression index: "s"
Parametric
boundary:The
target chemical should have a value of Molecular weight which is >= 134
Da
Domain
logical expression index: "t"
Parametric
boundary:The
target chemical should have a value of Molecular weight which is <= 194
Da
Description of key information
Biodegradability of test chemical (2E)-3-phenylprop-2-en-1-yl formate (CAS no. 104 -65 -4) was determined by using OECD QSAR tool box v3.3 with log Kow as primary descriptor. The test chemical (2E)-3-phenylprop-2-en-1-yl formate showed 92.40 % degradation by considering BOD as parameter and Microorganisms as inoculum in aerobic condition in 28 days. On the basis of percent degradation value in 28 days it is concluded that this test chemical is readily biodegradable.
Key value for chemical safety assessment
- Biodegradation in water:
- readily biodegradable
Additional information
Predicted data for the target compound(2E)-3-phenylprop-2-en-1-yl formate (CAS no. 104 -65 -4)and supporting weight of evidence studies for its read across substance were reviewed for the biodegradation end point which are summarized as below:
In first prediction the biodegradability of test chemical (2E)-3-phenylprop-2-en-1-yl formate (CAS no. 104 -65 -4) was determined by using OECD QSAR tool box v3.3 with log Kow as primary descriptor. The test chemical (2E)-3-phenylprop-2-en-1-yl formate showed 92.40 % degradation by considering BOD as parameter and Microorganisms as inoculum in aerobic condition in 28 days. On the basis of percent degradation value in 28 days it is concluded that this test chemical is readily biodegradable.
Another prediction was done by using Estimation Programs Interface Suite (EPI suite, 2017) to estimate the biodegradation potential of the test compound (2E)-3-phenylprop-2-en-1-yl formate (CAS no. 104 -65 -4) in the presence of mixed populations of environmental microorganisms. The biodegradability of the substance was calculated using seven different models such as Linear Model, Non-Linear Model, Ultimate Biodegradation Timeframe, Primary Biodegradation Timeframe, MITI Linear Model, MITI Non-Linear Model and Anaerobic Model (called Biowin 1-7, respectively) of the BIOWIN v4.10 software. The results indicate that chemical (2E)-3-phenylprop-2-en-1-yl formate is expected to be readily biodegradable.
Next, experimental study of read across substance 2E)-2-(phenylmethylidene)heptanal (CAS no. 122-40-7) was conducted to support the prediction study of target chemical (from Food and chemical Toxicolgy journal , 2015) in this study Biodegradation experiment was conducted for 28 days for evaluating the percentage biodegradability of read across substance (2E)-2-(phenylmethylidene)heptanal under aerobic conditions. The study was performed according to OECD Guideline 301 F (Ready Biodegradability: Manometric Respirometry Test). Concentration of inoculum i.e, sludge used was 30 mg/l and initial read across substance conc. used in the study was 100 mg/l, respectively. Aniline was used as a reference substance for the study. Test vessels involve the Bottle 1 & 2: Basal culture medium + activated sludge 30 mg/l + test chemical (100 mg/l); Bottle 3: Basal culture medium + activated sludge 30mg/l+ aniline (100mg/l) and Bottle 4: Basal culture medium + activated sludge 30 mg/l. Reference substance undergoes 61% degradation in 28 days. The percentage degradation of read across substance (2E)-2-(phenylmethylidene)heptanal was determined to be 90% by BOD parameter in 28 days. Thus, based on percentage degradation, (2E)-2 -(phenylmethylidene)heptanal is considered to be readily biodegradable in nature.
One more experimental study was conducted for read across substance 2 -phenylethyl propanoate (PEP) (from Pest Management Science journal, 2008) in this study Biodegradation experiment was conducted for 30 days for evaluating the percentage biodegradability of 2 -phenylethyl propanoate. Pond water was used as inoculums collected from the Iowa State University Horticulture Farm pond (Ames, IA, USA). Initial read across substance conc. used for the study was 10μg/g. The pH of the water was 7.3, the alkalinity was 91 mg/ml, and the total hardness was 182 mg/ml. Pond water (100 ml) was kept in French square bottles and spiked with 3H-PEP in 300 μl of acetone carrier solvent to result in a concentration of 10 μg/ml. Samples were taken at days 0, 0.25, 0.5, 1, 3, 7, 14, 21 and 30 post-treatment. Quantitative analysis of PEP was performed using a Hewlett-Packard (Palo Alto, CA, USA) series 1100 HPLC system with a quaternary pump, an autosampler, a thermostatted column compartment, and a Spectroflow 757 absorbance detector (ABI Analytical, Kratos Division, Ramsey, NJ, USA). Data were collected and analyzed using HP Chemstation system software (REV. A.04.01). An Alltech Adsorbosphere® (Deerfield, IL, USA) C18 column (4.6×250 mm, 5-μm particle size) was used. Detection was conducted at 270 nm with a flow rate of 1.0 ml/min at room temperature. The mobile phase was methanol/distilled water (70:30, v/v).Dissipation rates of PEP were calculated using first-order open models. A student’s t-test was used to compare dissipation rates of PEP in light and in dark from the water dissipation studies. Dissipation of PEP in water was very rapid with a DT 50 of 5 days. Volatility loss was negligible in one month with mass balance from 96% to 100%. The primary degradation product was 2-phenylethanol, which was produced from ester hydrolysis of phenethyl propionate; another degradation product was 2-(4-hydroxyphenyl) ethanol, which was probably a biotransformation product of 2-phenylethanol in microbes. The percentage degradation of read across substance 2-phenylethyl propanoate was determined to be 50% in 5 days. Thus, based on percentage degradation, 2-phenylethyl propanoate is considered to be readily biodegradable in nature.
On the basis of results of above mentioned studies for target chemical (2E)-3-phenylprop-2-en-1-yl formate (CAS no. 104 -65 -4) (from OECD QSAR tool boxv3.3 and EPI suite) and supporting weight of evidence studies. It is concluded that the test chemical (2E)-3-phenylprop-2-en-1-yl formate can be expected to be readily biodegradable.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.