Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 262-413-4 | CAS number: 60763-41-9
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Genetic toxicity: in vitro
Administrative data
- Endpoint:
- in vitro gene mutation study in bacteria
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Study period:
- The study was conducted between 04 May 2016 and 23 May 2016
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- guideline study
Data source
Reference
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 2 016
- Report date:
- 2016
Materials and methods
Test guidelineopen allclose all
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 471 (Bacterial Reverse Mutation Assay)
- Version / remarks:
- 1997
- Deviations:
- no
- Qualifier:
- according to guideline
- Guideline:
- EU Method B.13/14 (Mutagenicity - Reverse Mutation Test Using Bacteria)
- Version / remarks:
- 30 May 2008
- Deviations:
- no
- GLP compliance:
- yes (incl. QA statement)
- Type of assay:
- bacterial reverse mutation assay
Test material
- Reference substance name:
- 2-diethoxymethyl-1-phenylhept-1-ene
- EC Number:
- 262-413-4
- EC Name:
- 2-diethoxymethyl-1-phenylhept-1-ene
- Cas Number:
- 60763-41-9
- Molecular formula:
- C18H28O2
- IUPAC Name:
- 2-diethoxymethyl-1-phenylhept-1-ene
- Test material form:
- liquid
1
Method
- Target gene:
- - S. typhimurium: Histidine gene
- E. coli: Tryptophan gene
Species / strainopen allclose all
- Species / strain / cell type:
- S. typhimurium TA 1535, TA 1537, TA 98 and TA 100
- Species / strain / cell type:
- E. coli WP2 uvr A
- Metabolic activation:
- with and without
- Metabolic activation system:
- Rat liver S9-mix induced with Phenobarbitone/β-Naphthoflavone at 80/100 mg/kg/day.
- Test concentrations with justification for top dose:
- - First experiment: direct plate assay
All five strains:
Absence and presence of S9-mix: 1.5, 5, 15, 50, 150, 500, 1500 and 5000 μg/plate
- Second experiment: Pre-incubation assay
All five strains:
Absence and presence of S9-mix: 1.5, 5, 15, 50, 150, 500, 1500 and 5000 μg/plate - Vehicle / solvent:
- - Solvent used: DMSO
- Justification for choice of solvent: The test item was immiscible in sterile distilled water at 50 mg/mL but was fully miscible in dimethyl sulphoxide at the same concentration in solubility checks performed in-house. Dimethyl sulphoxide was therefore selected as the vehicle.
Controls
- Untreated negative controls:
- yes
- Negative solvent / vehicle controls:
- yes
- Remarks:
- dimethyl sulphoxide
- True negative controls:
- no
- Positive controls:
- yes
- Positive control substance:
- 4-nitroquinoline-N-oxide
- 9-aminoacridine
- N-ethyl-N-nitro-N-nitrosoguanidine
- benzo(a)pyrene
- other: 2-aminoanthracene (2AA)
- Details on test system and experimental conditions:
- METHOD OF APPLICATION: Experiment1: in agar (plate incorporation); experiment 2: preincubation
DURATION
- Preincubation period: 20 minutes
- Exposure duration: 48 hours
NUMBER OF REPLICATIONS: Doses of the test substance were tested in triplicate in each strain.
NUMBER OF CELLS EVALUATED: 0.9 to 9 x 10^9 bacteria per mL
DETERMINATION OF CYTOTOXICITY
- Method: The plates were viewed microscopically for evidence of thinning (toxicity). - Evaluation criteria:
- There are several criteria for determining a positive result. Any, one, or all of the following can be used to determine the overall result of the study:
1. A dose-related increase in mutant frequency over the dose range tested (De Serres and Shelby, 1979).
2. A reproducible increase at one or more concentrations.
3. Biological relevance against in-house historical control ranges.
4. Statistical analysis of data as determined by UKEMS (Mahon et al., 1989).
5. Fold increase greater than two times the concurrent solvent control for any tester strain (especially if accompanied by an out-of-historical range response (Cariello and Piegorsch, 1996)).
A test item will be considered non-mutagenic (negative) in the test system if the above criteria are not met.
Although most experiments will give clear positive or negative results, in some instances the data generated will prohibit making a definite judgment about test item activity. Results of this type will be reported as equivocal. - Statistics:
- Statistical significance was confirmed by using Dunnetts Regression Analysis (* = p < 0.05) for those values that indicate statistically significant increases in the frequency of revertant colonies compared to the concurrent solvent control
Results and discussion
Test resultsopen allclose all
- Key result
- Species / strain:
- S. typhimurium TA 1535
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity, but tested up to precipitating concentrations
- Remarks:
- of 5000 μg/plate
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Key result
- Species / strain:
- S. typhimurium TA 1537
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity, but tested up to precipitating concentrations
- Remarks:
- of 5000 μg/plate
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Key result
- Species / strain:
- S. typhimurium TA 98
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity, but tested up to precipitating concentrations
- Remarks:
- of 5000 μg/plate
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Key result
- Species / strain:
- S. typhimurium TA 100
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity, but tested up to precipitating concentrations
- Remarks:
- of 5000 μg/plate
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Key result
- Species / strain:
- E. coli WP2 uvr A
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity, but tested up to precipitating concentrations
- Remarks:
- of 5000 μg/plate
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Additional information on results:
- TEST-SPECIFIC CONFOUNDING FACTORS
- Precipitation: A test item precipitate (globular in appearance) was noted under a low-power microscope at 1500 μg/plate and by eye at 5000 μg/plate, this observation did not prevent the scoring of revertant colonies.
HISTORICAL CONTROL DATA (with ranges, means and standard deviation and confidence interval (e.g. 95%)
The vehicle (dimethyl sulphoxide) control plates gave counts of revertant colonies within the normal range. All of the positive control chemicals used in the test induced marked increases in the frequency of revertant colonies in excess of the minimum positive control values over the previous two years, both with or without metabolic activation. Thus, the sensitivity of the assay and the efficacy of the S9-mix were validated.
- Negative (solvent/vehicle) historical control data:
TA1535: 7 to 40
TA100: 60 to 200
TA1537: 2 to 30
TA98: 8 to 60
WP2uvrA: 10 to 60
ADDITIONAL INFORMATION ON CYTOTOXICITY:
There was no visible reduction in the growth of the bacterial background lawn at any dose level, either in the presence or absence of metabolic activation (S9-mix), in the first mutation test (plate incorporation method) and consequently the same maximum dose level was used in the second mutation test. Similarly, there was no visible reduction in the growth of the bacterial background lawn at any dose level, either in the presence or absence of metabolic activation (S9-mix), in the second mutation test (pre-incubation method).
Applicant's summary and conclusion
- Conclusions:
- The substance is not mutagenic in the Salmonella typhimurium reverse mutation assay and Escherichia coli reverse mutation assay performed according to OECD 471 guideline and GLP principles.
- Executive summary:
The mutagenic activity of the substance was evaluated in accordance with OECD 471 guideline and according to GLP principles.
The test was performed in two independent experiments, first a direct plate experiment and second a pre-incubation experiment in the absence and presence of S9 -mix. Adequate negative and positive controls were included.
The maximum dose level of the test item in the first experiment was selected as the maximum recommended dose level of 5000 μg/plate. There was no visible reduction in the growth of the bacterial background lawn at any dose level, either in the presence or absence of metabolic activation (S9-mix), in the first mutation test (plate incorporation method) and consequently the same maximum dose level was used in the second mutation test. Similarly, there was no visible reduction in the growth of the bacterial background lawn at any dose level, either in the presence or absence of metabolic activation (S9-mix), in the second
mutation test (pre-incubation method). A test item precipitate (globular in appearance) was noted under a low-power microscope at 1500 μg/plate and by eye at 5000 μg/plate, this observation did not prevent the scoring of revertant colonies.
The substance did not induce a significant dose related increase in the number of revertant (His+) colonies in each of the four S.typhimurium tester strains (TA1535, TA1537, TA98 and TA100) and in the number of revertant (Tryp+) colonies in E.coli WP2uvrA, both in the absence and presence of S9-metabolic activation. These results were confirmed in independently repeated experiment. Based on the results of this study it is concluded that the substance is not mutagenic in the Salmonella typhimurium reverse mutation assay and not mutagenic in the Escherichia coli reverse mutation assay.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.
