Registration Dossier

Diss Factsheets

Environmental fate & pathways

Biodegradation in water and sediment: simulation tests

Currently viewing:

Administrative data

Link to relevant study record(s)

Referenceopen allclose all

Endpoint:
biodegradation in water: sediment simulation testing
Type of information:
(Q)SAR
Adequacy of study:
key study
Study period:
March 31 2019
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
results derived from a valid (Q)SAR model and falling into its applicability domain, with adequate and reliable documentation / justification
Justification for type of information:
Standard simulation biodegradation studies are not possible for petroleum UVCB substances. In accordance with Annex XI Section 1.3 testing is not scientifically necessary and the endpoint has been fulfilled using QSAR calculations for relevant constituents. Full justifications for this QSAR are presented in 'Attached justification', but in brief these are justified because:
- the results are obtained from a QSAR model whose scientific validity has been established
- petroleum substances fall within the applicability domain of the QSAR model
- results are adequate for the purposes of risk assessment
- adequate and reliable documentation is provided
Qualifier:
no guideline required
Principles of method if other than guideline:
- Software tool(s) used including version: EPISuite v4.10
- Model(s) used: BioHCWin v1.01a
- Model description: see field 'Attached justification'
- Justification of QSAR prediction: see field 'Attached justification'
Compartment:
sediment
DT50:
>= 22.79 - <= 35.63 d
Temp.:
20 °C
Remarks on result:
other: QSAR result.
Remarks:
Calculated degradation half-lives for constituents of this substance range between 22.79 - 35.63 days. It should be borne in mind that this is the full range of predicted values, and that this may be misleading or unrepresentative of the properties of the UVCB substance as a whole. The range should therefore be treated with caution and not taken out of context. The substance is a hydrocarbon UVCB. Standard simulation studies for this endpoint are intended for monoconstituent substances and are not possible for this complex substance. However, this endpoint is characterised using quantitative structure property relationships for representative hydrocarbon structures that comprise the hydrocarbon blocks used to assess the environmental risk of this substance with the PETRORISK model (see Product Library in PETRORISK spreadsheet attached in IUCLID section 13). For purposes of PBT assessment, the substance has been assessed using a combination of QSAR predictions and confirmatory experimental testing for representative constituents using a hydrocarbon block approach. For details see report titled 'Evaluation of PBT for Petroleum Substances' in IUCLID section 13.
Transformation products:
not specified
Endpoint:
biodegradation in water: simulation testing on ultimate degradation in surface water
Type of information:
(Q)SAR
Adequacy of study:
key study
Study period:
March 31 2020
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
results derived from a valid (Q)SAR model and falling into its applicability domain, with adequate and reliable documentation / justification
Justification for type of information:
Standard simulation biodegradation studies are not possible for petroleum UVCB substances. In accordance with Annex XI Section 1.3 testing is not scientifically necessary and the endpoint has been fulfilled using QSAR calculations for relevant constituents. Full justifications for this QSAR are presented in 'Attached justification', but in brief these are justified because:
- the results are obtained from a QSAR model whose scientific validity has been established
- petroleum substances fall within the applicability domain of the QSAR model
- results are adequate for the purposes of risk assessment
- adequate and reliable documentation is provided
Qualifier:
no guideline required
Principles of method if other than guideline:
- Software tool(s) used including version: EPISuite v4.10
- Model(s) used: BioHCWin v1.01a
- Model description: see field 'Attached justification'
- Justification of QSAR prediction: see field 'Attached justification'
Compartment:
water
DT50:
>= 5.7 - <= 8.91 d
Temp.:
20 °C
Remarks on result:
other: QSAR result
Remarks:
Calculated degradation half-lives for constituents of this substance range between 5.7 - 8.91 days. It should be borne in mind that this is the full range of predicted values, and that this may be misleading or unrepresentative of the properties of the UVCB substance as a whole. The range should therefore be treated with caution and not taken out of context. The substance is a hydrocarbon UVCB. Standard simulation studies for this endpoint are intended for monoconstituent substances and are not possible for this complex substance. However, this endpoint is characterised using quantitative structure property relationships for representative hydrocarbon structures that comprise the hydrocarbon blocks used to assess the environmental risk of this substance with the PETRORISK model (see Product Library in PETRORISK spreadsheet attached in IUCLID section 13). For purposes of PBT assessment, the substance has been assessed using a combination of QSAR predictions and confirmatory experimental testing for representative constituents using a hydrocarbon block approach. For details see report titled 'Evaluation of PBT for Petroleum Substances' in IUCLID section 13.
Transformation products:
not specified

Description of key information

Standard simulation biodegradation studies are not possible for petroleum UVCB substances. In accordance with Annex XI Section 1.3 testing is not scientifically necessary and the endpoint has been fulfilled using QSAR calculations for relevant constituents. Full justifications for this QSAR are presented in 'Attached justification', but in brief these are justified because:

-the results are obtained from a QSAR model whose scientific validity has been established

-petroleum substances fall within the applicability domain of the QSAR model

-results are adequate for the purposes of risk assessment

-adequate and reliable documentation is provided

Key value for chemical safety assessment

Additional information

The substance is a hydrocarbon UVCB. Standard simulation studies for this endpoint are intended for monoconstituent substances and are not possible for this complex substance.However, this endpoint is characterised using quantitative structure property relationships for representative hydrocarbon structures that comprise the hydrocarbon blocks used to assess the environmental risk of this substance with the PETRORISK model (see Product Library in PETRORISK spreadsheet attached in IUCLID section 13).