Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 203-306-4 | CAS number: 105-54-4
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Description of key information
Hydrolysis
The base catalyzed second order hydrolysis rate constant was determined using a structure estimation method of the test chemical (authoritative databases, 2017). The second order hydrolysis rate constant of test chemical was determined to be 6.3L/mol-sec with a corresponding half-lives of 3.5 yrs and 130 days at pH 7 and 8, respectively. Based on the half-life values, it is concluded that the test chemical is not hydrolysable.
Additional information
Hydrolysis
Various experimental key and supporting studies for the test chemical were reviewed for the hydrolysis end point which are summarized as below:
In an experimental key study from authoritative database (2017),the base catalyzed second order hydrolysis rate constant was determined using a structure estimation method of the test chemical. The second order hydrolysis rate constant of test chemical was determined to be 6.3 L/mol-sec with a corresponding half-lives of 3.5 yrs and 130 days at pH 7 and 8, respectively.
In an another study, the half-life value of test chemical in water was determined at different pH. The hydrolysis half-life value of test chemical was determined to be 10 yrs, 6 yrs, 229 days and 23 days at pH 5, 7, 8 and 9, respectively.
In a prediction done using the HYDROWIN v2.00 program of Estimation Programs Interface (2017) prediction model was used to predict the hydrolysis half-life of test chemical. The estimated half-life of test chemical was determined to be 3.505 yrs and 128.021 days at pH 7.0 and 8.0 (at 25ᵒC) respectively, indicating that it is not hydrolysable.
For the test chemical, the half-life and base catalyzed second order hydrolysis rate constant was determined of the test chemical (HSDB, 2017). The second order hydrolysis rate constant of test chemical was determined to be 0.089L/mol-sec with a corresponding half-lives of 2.5 yrs and 90 days at pH 7 and 8, respectively.
In an another study from authoritative database (2017), the half-life and base catalyzed second order hydrolysis rate constant of the test chemical was determined using a structure estimation method. The second order hydrolysis rate constant of test chemical was determined to be 0.12 L/mol-sec with a corresponding half-lives of 1.7 yrs and 64 days at pH 7 and 8, respectively.
On the basis of above results for test chemical (from handbook, authoritative and modelling databases,2017), it can be concluded that the half-life value of test chemical was determined to be ranges from 23 days to 10 yrs, respectively, indicating that the test chemicalis not hydrolysable.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.