Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Toxicological information

Genetic toxicity: in vitro

Currently viewing:

Administrative data

Endpoint:
in vitro gene mutation study in mammalian cells
Remarks:
Type of genotoxicity: gene mutation
Type of information:
experimental study
Adequacy of study:
key study
Study period:
21 July 2014 to 16 September 2014
Reliability:
1 (reliable without restriction)
Rationale for reliability incl. deficiencies:
other: The study was performed to a recognised guideline and used GLP

Data source

Reference
Reference Type:
study report
Title:
Unnamed
Year:
2014
Report date:
2014

Materials and methods

Test guidelineopen allclose all
Qualifier:
according to guideline
Guideline:
OECD Guideline 476 (In Vitro Mammalian Cell Gene Mutation Test)
Deviations:
no
Qualifier:
according to guideline
Guideline:
EU Method B.17 (Mutagenicity - In Vitro Mammalian Cell Gene Mutation Test)
Deviations:
no
Qualifier:
according to guideline
Guideline:
EPA OPPTS 870.5300 - In vitro Mammalian Cell Gene Mutation Test
Deviations:
no
GLP compliance:
yes (incl. QA statement)
Type of assay:
mammalian cell gene mutation assay

Test material

Constituent 1
Chemical structure
Reference substance name:
Reaction Products of Diphosphorus Pentaoxide with Alcohols, C14-18 even, salted with Amines, C12-14, Tert-alkyl
EC Number:
943-540-0
Molecular formula:
Too complex
IUPAC Name:
Reaction Products of Diphosphorus Pentaoxide with Alcohols, C14-18 even, salted with Amines, C12-14, Tert-alkyl
Test material form:
other: pale amber liquid
Details on test material:
- Analytical purity: 100% (UVCB)
- Storage condition of test material: Room temperature in the dark

Method

Target gene:
The thymidine kinase, TK +1-, locus of the L5178Y mouse lymphoma cell line.
Species / strain
Species / strain / cell type:
mouse lymphoma L5178Y cells
Details on mammalian cell type (if applicable):
- Type and identity of media:
RPMI 1640 medium with Glutamax-1 and HEPES buffer (20 mM) supplemented with Penicillin (100 units/ml), Streptomycin (100 ug/ml), Sodium pyruvate (1 mM), Amphotericin B (2.5 ug/ml) and 10% donor horse serum (giving R10 media) at 37 oC with 5% CO2 in air.
- Properly maintained: yes
- Periodically checked for Mycoplasma contamination: yes
- Periodically checked for karyotype stability: no
- Periodically "cleansed" against high spontaneous background: yes
Additional strain / cell type characteristics:
not applicable
Metabolic activation:
with and without
Metabolic activation system:
S9 was prepared in-house from the livers of male Wistar Han™ rats weighing -200g. These had each received, orally, three consecutive daily doses of phenobarbitall~-naphthoflavone(80/100 mg per kg per day) prior to S9 preparation on the fourth day.
Test concentrations with justification for top dose:
Experiment 1 (ug/ml) without S9: 0, 9.77, 19.53, 39.06, 78.13, 117.19, 156.25, 234.38, 312.5 ug/ml
Experiment 1 (ug/ml) with S9: 0, 9.77, 19.53, 39.06, 78.13, 117.19, 156.25, 234.38, 312.5 ug/ml
Experiment 2 (ug/ml) without S9: 0, 1.25, 2.5, 5, 10, 20, 30, 40, 60 ug/ml
Experiment 2 (ug/ml) with S9: 0, 15, 30, 60, 120, 240, 280, 320, 360
Vehicle / solvent:
- Vehicle(s)/solvent(s) used: Acetone
- Justification for choice of solvent/vehicle: The test item was insufficiently soluble in water and DMSO.
Controlsopen allclose all
Untreated negative controls:
no
Negative solvent / vehicle controls:
yes
True negative controls:
no
Positive controls:
yes
Positive control substance:
ethylmethanesulphonate
Remarks:
400 ug/ml in Expt. 1, 150 ug/ml in Expt. 2
Untreated negative controls:
no
Negative solvent / vehicle controls:
yes
True negative controls:
no
Positive controls:
yes
Positive control substance:
cyclophosphamide
Remarks:
2 ug/ml in both experiments
Details on test system and experimental conditions:
METHOD OF APPLICATION: Cells were routinely cultured in RPMI 1640 medium with Glutamax-1 and HEPES buffer (20 mM) supplemented with Penicillin (100 units/ml), Streptomycin (100 ~g/ml), Sodium pyruvate (1 mM), Amphotericin B (2.5 ~g/ml) and 10% donor horse serum (giving R10 media). Several days before starting the experiment, an exponentially growing stock culture of cells was set up so as to provide an excess of cells on the morning of the experiment. The cells were counted and processed to give 1 x 10^6 cells/ml in 10 ml aliquots in R10 medium in sterile plastic universals. The cells were exposed to doses of the test material, vehicle and positive control, both with and without metabolic activation. Cultures were maintained at 37 °C in a humidified atmosphere of 5 % CO2 in air.
The treatment regimes were as follows:

DURATION
- Preincubation period: Not applicable.
- Exposure duration: 4 h (Experiment 1 both with and without S9, and Experiment 2 with S9), or 24 h (without S9 Experiment 2).
- Expression time (cells in growth medium): 2 days
- Selection time (if incubation with a selection agent): 10~14 days (plate scoring for colony formation)

SELECTION AGENT (mutation assays): 5-trifluorothymidine (TFT)
SPINDLE INHIBITOR (cytogenetic assays): Not applicable.
STAIN (for cytogenetic assays): MTT vital stain for viable cells

NUMBER OF REPLICATIONS: Duplicate

NUMBER OF CELLS EVALUATED: seeded 2000 cells/well for mutant frequency; 2 cells/well for viability.

DETERMINATION OF CYTOTOXICITY
- Method: other: Relative Suspension Growth values (RSG)

OTHER: The daily cell counts were used to obtain a Relative Suspension Growth (%RSG) value that gives an indication of post treatment toxicity during the expression period as a comparison to the vehicle control, and when combined with the Viability (%V) data a Relative Total Growth (RTG) value. The experimental mutation frequency data were analyzed using a dedicated computer program which follows the statistical guidelines recommended by the UKEMS.
Evaluation criteria:
For a test item to demonstrate a mutagenic response it must produce a statistically significant increase in the induced mutant frequency (IMF) over the concurrent vehicle mutant frequency value. Following discussions at an International Workshop on Genotoxicity Test Procedures in Plymouth, UK, 2002 (Moore et al 2003) it was felt that the IMF must exceed some value based on the global background MF for each method (agar or microwell). This Global Evaluation Factor (GEF) value was set following a further meeting of the International Workshop in Aberdeen, Scotland, 2003 (Moore et al 2006) at 126 x 10'6 for the microwell method. Therefore, any test item dose level that has a mutation frequency value that is greater than the
corresponding vehicle control by the GEF of 126 x 10 " and demonstrates a positive linear trend will be considered positive. However, if a test item produces a modest increase in mutant frequency, which only marginally exceeds the GEF value and is not reproducible or part of a dose-related response, then it may be considered to have no toxicological significance. Conversely, when a test item induces modest reproducible increases in the mutation frequencies that do not exceed the GEF value then scientific judgement will be applied. If the reproducible responses are significantly dose-related and include increases in the absolute numbers of mutant colonies then they may be considered tobe toxicologically significant. Small significant increases designated by the UKEMS statistical package will be reviewed using the above criteria, and may be disregarded at the Study Director's discretion.
Statistics:
The experimental data was analyzed using a dedicated computer program which follows the statistical guidelines recommended by the UKEMS statistical package. Dose levels that have survival values less than 10% are excluded from any statistical analysis, as any response they give would be considered to have no biological or toxicological relevance.

Results and discussion

Test results
Species / strain:
mouse lymphoma L5178Y cells
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
cytotoxicity
Vehicle controls validity:
valid
Untreated negative controls validity:
not examined
Positive controls validity:
valid
Additional information on results:
TEST-SPECIFIC CONFOUNDING FACTORS
- Effects of pH: None
- Effects of osmolality: None

RANGE-FINDING/SCREENING STUDIES:
The dose range of the test item used in the preliminary toxicity test was 9.77 to 2500 ug/mL. In the 4-hour exposures, both in the absence and presence of metabolic activation (S9), there was evidence of marked reductions in the Relative Suspension Growth (%RSG) of cells treated with the test item when compared to the concurrent vehicle controls. In the 24-hour exposure in the absence of S9 there was evidence of marked reductions of %RSG values of cells treated with test item. The toxicity curve in all three exposure groups was quite steep and this indicated that achieving optimum levels of toxicity would be difficult during the course of the study. A precipitate of the test item was observed at and above 1250 ug/mL in the absence of metabolic activation and at 2500 ug/m L in the presence of metabolic activation. In the subsequent mutagenicity experiments the maximum dose was limited by test item induced toxicity.
Remarks on result:
other: strain/cell type: mouse lymphoma L5178Y cells
Remarks:
Migrated from field 'Test system'.

Applicant's summary and conclusion

Conclusions:
Interpretation of results (migrated information):
negative

The test item did not induce any toxicologically significant increases in the mutant frequency at the TK +/- locus in L5178Y cells and is therefore considered to be non-mutagenic under the conditions of the test.
Executive summary:
Introduction The study was conducted according to a method that was designed to assess the potential mutagenicity of the test item on the thymidine kinase, TK +/-, locus of the L5178Y mouse lymphoma cell line. The method was designed to be compatible with the OECD Guidelines for Testing of Chemicals No.476 "In Vitro Mammalian Cell Gene Mutation Tests", Method B17 of Commission Regulation (EC) No. 440/2008 of 30 May 2008, the US EPA OPPTS 870.5300 Guideline, and be in alignment with the Japanese MITI/MHW guidelines for testing of new chemical substances. Method Two independent experiments were performed. In Experiment 1, L5178Y TK +/- 3.7.2c mouse lymphoma cells (heterozygous at the thymidine kinase locus) were treated with the test item at eight dose levels, in duplicate, together with vehicle (solvent) and positive controls using 4-hour exposure groups both in the absence and presence of metabolic activation (2% S9). In Experiment 2, the cells were treated with the test item at eight dose levels using a 4-hour exposure group in the presence of metabolic activation (1% S9) and a 24 hour exposure group in the absence of metabolic activation. The dose range of test item used in the main test was selected following the results of a preliminary toxicity test. The maximum dose level used in the main test was limited by test item induced toxicity. Results A precipitate of test item was observed at and above 320 ug/mL. The vehicle (solvent) controls had acceptable mutant frequency values that were within the normal range for the L5178Y cell line at the TK +/- locus. The positive control items induced marked increases in the mutant frequency indicating the satisfactory performance of the test and of the activity of the metabolizing system. The test item did not induce any toxicologically significant or dose-related (linear-trend) increases in the mutant frequency at any of the dose levels, either with or without metabolic activation, in either the first or the second experiment Conclusion The test item did not induce any toxicologically significant increases in the mutant frequency at the TK +/- locus in L5178Y cells and is therefore considered to be non-mutagenic under the conditions of the test.