Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 943-328-8 | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Genetic toxicity: in vitro
Administrative data
- Endpoint:
- in vitro gene mutation study in bacteria
- Remarks:
- Type of genotoxicity: gene mutation
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Study period:
- From May 01 to 29, 2015
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- other: GLP study conducted according to OECD test Guideline No. 471 without any deviation.
Cross-referenceopen allclose all
- Reason / purpose for cross-reference:
- reference to same study
- Reason / purpose for cross-reference:
- reference to other study
Data source
Reference
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 2 015
- Report date:
- 2015
Materials and methods
Test guidelineopen allclose all
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 471 (Bacterial Reverse Mutation Assay)
- Deviations:
- no
- Qualifier:
- according to guideline
- Guideline:
- EU Method B.13/14 (Mutagenicity - Reverse Mutation Test Using Bacteria)
- Deviations:
- no
- Principles of method if other than guideline:
- Not applicable
- GLP compliance:
- yes (incl. QA statement)
- Remarks:
- UK GLP Compliance Program (inspected on March 12 to 14, 2014 / Signed on May 12, 2014)
- Type of assay:
- bacterial reverse mutation assay
Test material
- Reference substance name:
- Reaction Mass of 4-(2,6,6-trimethylcyclohex-1-en-1-yl)butan-2-one and 4-(2,6,6-trimethylcyclohex-2-en-1-yl)butan-2-one and 4-[(1RS,6RS)-2,2,6-trimethylcyclohexyl]butan-2-one and (2RS,4aRS)-2,5,5-trimethyl-1,2,3,4,4a,5,6,7-octahydronaphthalen-2-ol and 2,5,5-trimethyl-1,2,3,4,5,6,7,8-octahydronaphthalen-2-ol
- EC Number:
- 943-328-8
- Molecular formula:
- Not applicable
- IUPAC Name:
- Reaction Mass of 4-(2,6,6-trimethylcyclohex-1-en-1-yl)butan-2-one and 4-(2,6,6-trimethylcyclohex-2-en-1-yl)butan-2-one and 4-[(1RS,6RS)-2,2,6-trimethylcyclohexyl]butan-2-one and (2RS,4aRS)-2,5,5-trimethyl-1,2,3,4,4a,5,6,7-octahydronaphthalen-2-ol and 2,5,5-trimethyl-1,2,3,4,5,6,7,8-octahydronaphthalen-2-ol
- Test material form:
- other: liquid
- Details on test material:
- - Physical state: Clear colourless liquid
- Storage condition of test material: Room temperature in the dark
Constituent 1
Method
- Target gene:
- Histidine and tryptophan.
Species / strain
- Species / strain / cell type:
- S. typhimurium TA 1535, TA 1537, TA 98, TA 100 and E. coli WP2
- Details on mammalian cell type (if applicable):
- Not applicable
- Additional strain / cell type characteristics:
- not applicable
- Metabolic activation:
- with and without
- Metabolic activation system:
- 10% S9: S9-mix from the livers of male rats treated with phenobarbitone/β-naphthoflavone (80/100 mg/kg bw/day by oral route, for 3 days prior to preparation on day 4).
- Test concentrations with justification for top dose:
- Experiment 1 (Plate Incorporation Method):1.5, 5, 15, 50, 150, 500, 1500 and 5000 µg/plate in all strains with and without S9-mix
Experiment 2 (Pre-Incubation Method):
- All Salmonella strains (with and without S9-mix) and E.coli strain (without S9-mix): 1.5, 5, 15, 50, 150, 500, 1500 μg/plate.
- E.coli strain (with S9-mix): 15, 50, 150, 500, 1500, 5000 μg/plate. - Vehicle / solvent:
- - Vehicle(s)/solvent(s) used: Dimethyl sulphoxide (DMSO)
- Justification for choice of solvent/vehicle: Test item was immiscible in sterile distilled water at 50 mg/mL but was fully miscible in dimethyl sulphoxide at the same concentration in solubility checks performed in house. Dimethyl sulphoxide was therefore selected as the vehicle.
- Preparation of test materials: The test item was accurately weighed and approximate half-log dilutions prepared in dimethyl sulphoxide by mixing on a vortex mixer on the day of each experiment. All formulations were used within four hours of preparation and were assumed to be stable for this period. Prior to use, the solvent was dried to remove water using molecular sieves i.e. 2 mm sodium alumino-silicate pellets with a nominal pore diameter of 4 x 10-4 microns.
Controlsopen allclose all
- Untreated negative controls:
- yes
- Negative solvent / vehicle controls:
- yes
- Remarks:
- DMSO
- True negative controls:
- no
- Positive controls:
- yes
- Positive control substance:
- 4-nitroquinoline-N-oxide
- 9-aminoacridine
- N-ethyl-N-nitro-N-nitrosoguanidine
- Remarks:
- Without S9-mix
- Untreated negative controls:
- yes
- Negative solvent / vehicle controls:
- yes
- Remarks:
- DMSO
- True negative controls:
- no
- Positive controls:
- yes
- Positive control substance:
- benzo(a)pyrene
- other: 2-Aminoanthracene
- Remarks:
- With S9-mix
- Details on test system and experimental conditions:
- METHOD OF APPLICATION: in agar (plate incorporation); preincubation
DURATION
- Exposure duration: Plates were incubated at 37 °C ± 3 °C for approximately 48 hours
NUMBER OF REPLICATIONS: Triplicate plates per dose level.
DETERMINATION OF CYTOTOXICITY
- Method: The plates were viewed microscopically for evidence of thinning (toxicity).
OTHERS:
After incubation, the plates were assessed for numbers of revertant colonies using an automated colony counting system. - Evaluation criteria:
- There are several criteria for determining a positive result. Any, one, or all of the following can be used to determine the overall result of the study:
- A dose-related increase in mutant frequency over the dose range tested (De Serres and Shelby, 1979).
- A reproducible increase at one or more concentrations.
- Biological relevance against in-house historical control ranges.
- Statistical analysis of data as determined by UKEMS (Mahon et al., 1989).
- Fold increases greater than two times the concurrent solvent control for any tester strain (especially if accompanied by an out of historical range response (Cariello and Piegorsch, 1996)).
A test item will be considered non-mutagenic (negative) in the test system if the above criteria are not met.
Although most experiments will give clear positive or negative results, in some instances the data generated will prohibit making a definite judgment about test item activity. Results of this type will be reported as equivocal. - Statistics:
- Statistical analysis of data as determined by UKEMS (Mahon et al., 1989).
Results and discussion
Test resultsopen allclose all
- Key result
- Species / strain:
- S. typhimurium TA 1535
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- not applicable
- Positive controls validity:
- valid
- Key result
- Species / strain:
- S. typhimurium TA 1537
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- not applicable
- Positive controls validity:
- valid
- Key result
- Species / strain:
- S. typhimurium TA 98
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- not applicable
- Positive controls validity:
- valid
- Key result
- Species / strain:
- S. typhimurium TA 100
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- not applicable
- Positive controls validity:
- valid
- Key result
- Species / strain:
- E. coli WP2 uvr A
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- not applicable
- Positive controls validity:
- valid
- Additional information on results:
- TEST-SPECIFIC CONFOUNDING FACTORS
- Effects of pH: Not applicable
- Effects of osmolality: Not applicable
- Evaporation from medium: No data
- Water solubility: The test material was fully miscible in dimethyl sulphoxide at 50 mg/mL.
- Precipitation: No test item precipitate was observed on the plates at any of the doses tested in either the presence or absence of S9-mix.
- Other confounding effects: None
RESULTS:
The maximum dose level of the test item in the first experiment was selected as the maximum recommended dose level of 5000 µg/plate. In the first mutation test, the test item induced a visible reduction in the growth of the bacterial background lawns of all of the Salmonella strains at and above 1500 µg/plate both in the presence and absence of metabolic activation (S9-mix). No toxicity was noted to Escherichia coli strain WP2uvrA at any test item dose level in either the absence or presence of S9-mix. Consequently the same maximum dose level or the toxic limit was used in the second mutation test, depending on bacterial strain type and presence or absence of metabolic activation (S9-mix). In the second mutation test (pre-incubation method), the test item again induced a toxic response with weakened bacterial background lawns noted in the absence of S9-mix from 150 µg/plate (TA100, TA1535 and TA1537), 500 µg/plate (TA98) and 1500 µg/plate (WP2uvrA). In the presence S9-mix weakened bacterial background lawns were noted from 500 µg/plate (all Salmonella strains) and 1500 µg/plate (WP2uvrA). The sensitivity of the bacterial tester strains to the toxicity of the test item varied slightly between strain type, exposures with or without S9-mix and experimental methodology.
There were no toxicologically significant increases in the frequency of revertant colonies recorded for any of the bacterial strains, with any dose of the test item, either with or without metabolic activation in Experiment 1 (plate incorporation method). Similarly, no significant increases in the frequency of revertant colonies were recorded for any of the bacterial strains, with any dose of the test item, either with or without metabolic activation in Experiment 2 (pre incubation method). Small, statistically significant increases in WP2uvrA revertant colony frequency were observed in the absence of S9-mix at 15 and 5000 µg/plate in the first mutation test. These increases were considered to be of no biological relevance because there was no evidence of a dose-response relationship or reproducibility. Furthermore, the individual revertant counts at the statistically significant dose levels were within the in-house historical untreated/vehicle control range for the tester strain and the maximum fold increase was only 1.8 times the concurrent vehicle control.
COMPARISON WITH HISTORICAL CONTROL DATA: All tester strain cultures exhibit a characteristic number of spontaneous revertants per plate in the vehicle and positive controls. The comparison was made with the historical control ranges for 2013 and 2014 of the corresponding Testing Laboratory.
OTHERS:
- The test material formulation, amino acid supplemented top agar and S9-mix used in this experiment were shown to be sterile. - Remarks on result:
- other: all strains/cell types tested
- Remarks:
- Migrated from field 'Test system'.
Any other information on results incl. tables
See the attached document for information on tables of results
Applicant's summary and conclusion
- Conclusions:
- Interpretation of results (migrated information):
negative with metabolic activation
negative without metabolic activation
Under the test condition, test material is not mutagenic with and without metabolic activation in S. typhimurium (strains TA1535, TA1537, TA98 and TA100) and E.coli WP2 uvrA- according to the criteria of the Annex VI of the of the Regulation (EC) No. 1272/2008 (CLP). - Executive summary:
In a reverse gene mutation assay performed according to the OECD test guideline No. 471 and in compliance with GLP, Salmonella typhimurium strains TA1535, TA1537, TA98 and TA100 and Escherichia coli strain WP2uvrAwere treated with the test item using both the Ames plate incorporation and pre‑incubation methods at up to eight dose levels, in triplicate, both with and without the addition of a rat liver homogenate metabolizing system (10% liver S9 in standard co-factors). The dose range for Experiment 1 was predetermined and was 1.5 to 5000 mg/plate. The experiment was repeated on separate days (pre-incubation method) using fresh cultures of the bacterial strains and fresh test item formulations. The dose range was amended, following the results of Experiment 1 (and a terminated section of Experiment 2), and ranged between 1.5 and 5000 µg/plate, depending on bacterial strain type and presence or absence of S9-mix.
Six test item dose levels were selected in Experiment 2 in order to achieve both a minimum of four non-toxic dose levels and the toxic limit of the test item following the change in test methodology.
The vehicle control plates gave counts of revertant colonies within the normal range. All of the positive control chemicals used in the test induced marked increases in the frequency of revertant colonies, both with or without metabolic activation. Thus, the sensitivity of the assay and the efficacy of the S9-mix were validated.
The maximum dose level of the test item in the first experiment was selected as the maximum recommended dose level of 5000 µg/plate. In the first mutation test, the test item induced a visible reduction in the growth of the bacterial background lawns of all of theSalmonellastrains at and above 1500 µg/plate both in the presence and absence of metabolic activation (S9-mix). No toxicity was noted to Escherichia coli strain WP2uvrA at any test item dose level in either the absence or presence of S9-mix. Consequently the same maximum dose level or the toxic limit was used in the second mutation test, depending on bacterial strain type and presence or absence of metabolic activation (S9-mix). In the second mutation test (pre-incubation method), the test item again induced a toxic response with weakened bacterial background lawns noted in the absence of S9-mix from 150 µg/plate (TA100, TA1535 and TA1537), 500 µg/plate (TA98) and 1500 µg/plate (WP2uvrA). In the presence S9-mix weakened bacterial background lawns were noted from 500 µg/plate (all Salmonella strains) and 1500 µg/plate (WP2uvrA). The sensitivity of the bacterial tester strains to the toxicity of the test item varied slightly between strain type, exposures with or without S9-mix and experimental methodology. No test item precipitate was observed on the plates at any of the doses tested in either the presence or absence of S9-mix.
There were no toxicologically significant increases in the frequency of revertant colonies recorded for any of the bacterial strains, with any dose of the test item, either with or without metabolic activation in Experiment 1 (plate incorporation method). Similarly, no significant increases in the frequency of revertant colonies were recorded for any of the bacterial strains, with any dose of the test item, either with or without metabolic activation in Experiment 2 (pre‑incubation method). Small, statistically significant increases in WP2uvrA revertant colony frequency were observed in the absence of S9-mix at 15 and 5000 µg/plate in the first mutation test. These increases were considered to be of no biological relevance because there was no evidence of a dose-response relationship or reproducibility. Furthermore, the individual revertant counts at the statistically significant dose levels were within the in-house historical untreated/vehicle control range for the tester strain and the maximum fold increase was only 1.8 times the concurrent vehicle control.
Under the test condition, test material is not mutagenic with and without metabolic activation in S. typhimurium (strains TA1535, TA1537, TA98 and TA100) and E.coli WP2 uvrA- according to the criteria of the Annex VI of the of the Regulation (EC) No. 1272/2008 (CLP).
This study is considered as acceptable and satisfies the requirement for reverse gene mutation endpoint.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.