Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 700-497-0 | CAS number: 1335202-82-8
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Key value for chemical safety assessment
Additional information
Chromosome Aberration Study:
Introduction:
This report describes the results of anin vitrostudy for the detection of structural chromosomal aberrations in cultured mammalian cells. It supplements microbial systems insofar as it identifies potential mutagens that produce chromosomal aberrations rather than gene mutations (Scottet al, 1990). The method used followed that described in the OECD Guidelines for Testing of Chemicals (1997) No. 473 "Genetic Toxicology: Chromosome Aberration Test" and Method B10 of Commission Directive 2000/32/EC. The study design also meets the requirements of the UK Department of Health Guidelines for Testing of Chemicals for Mutagenicity.
Methods:
Duplicate cultures of human lymphocytes, treated with the test material, were evaluated for chromosome aberrations at three dose levels, together with vehicle and positive controls. Four treatment conditions were used for the study, i.e. In Experiment 1, 4 hours in the presence of an induced rat liver homogenate metabolising system (S9), at a 2% final concentration with cell harvest after a 20-hour expression period and a 4 hours exposure in the absence of metabolic activation (S9) with a 20-hour expression period. In Experiment 2, the 4 hours exposure with addition of S9 was repeated (using a 1% final S9 concentration); whilst in the absence of metabolic activation the exposure time was increased to 24 hours.
Results:
All vehicle (solvent) controls had frequencies of cells with aberrations within the range expected for normal human lymphocytes. All the positive control materials induced statistically significant increases in the frequency of cells with aberrations indicating the satisfactory performance of the test and of the activity of the metabolising system.
The test material was non-toxic and did not induce any statistically significant increases in the frequency of cells with aberrations, in either of two separate experiments, using a dose range that included a dose level that was the lowest precipitating dose level.
Conclusion:
The test material was considered to be non-clastogenic to human lymphocytes in vitro.
Ames Study :
Introduction:
The method was designed to meet the requirements of the OECD Guidelines for Testing of Chemicals No. 471 "Bacterial Reverse Mutation Test", Method B13/14 of Commission Directive 2000/32/EC and the USA, EPA (TSCA) OPPTS harmonised guidelines.
Methods:
Salmonella typhimuriumstrains TA1535, TA1537, TA102, TA98 and TA100 were treated with the test material using theplate incorporation method at five dose levels, in triplicate, both with and without the addition of a rat liver homogenate metabolising system (10% liver S9 in standard co-factors). The dose range was determined in a preliminary toxicity assay and was 50 to 5000 µg/plate in the first experiment. The experiment was repeated on a separate day using the same dose range as Experiment 1, fresh cultures of the bacterial strains and fresh test material formulations.
Results:
The vehicle (acetone) control plates gave counts of revertant colonies within the normal range. All of the positive control chemicals used in the test induced marked increases in the frequency of revertant colonies, both with or without metabolic activation. Thus, the sensitivity of the assay and the efficacy of the S9-mix were validated.
The test material caused no visible reduction in the growth of the bacterial background lawn at any dose level. The test material was, therefore, tested up to the maximum recommended dose level of 5000 µg/plate. A precipitate (oily in appearance) was observed at and above 1500 µg/plate, this did not prevent the scoring of revertant colonies.
No significant increases in the frequency of revertant colonies were recorded for any of the bacterial strains, with any dose of the test material, either with or without metabolic activation.
Conclusion:
The test material was considered to be non-mutagenic under the conditions of this test.
Short description of key information:
The test material has been considerd to be non mutagenic for both an AMES and a Chromosome Aberration study.
Endpoint Conclusion: No adverse effect observed (negative)
Justification for classification or non-classification
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.