Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 200-755-8 | CAS number: 71-48-7
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Henry's Law constant
Administrative data
Link to relevant study record(s)
Description of key information
No volatilization potential.
Key value for chemical safety assessment
Additional information
a) The inorganic component (cobalt) is not volatile.
b) The organic component (acetic acid CAS: 64-19-7) is also not volatile (H = 0.0555261 Pa*m³/mole at 25°C).
Summary according the volatilization potential of cobalt and cobalt compounds and its atmospheric behavior, as given in CICAD 69 (WHO 2006)
Cobalt and inorganic cobalt compounds are nonvolatile. Therefore, they are released into the atmosphere in particulate form. Atmospheric transport depends on particle size and density and meteorological conditions. Coarse particles with diameters >2 μm may deposit within 10 km from the point of emission, while smaller particles may travel longer distances. The mass median diameter of atmospheric cobalt was found to be 2.6 μm in one study (Milford & Davidson, 1985). Data on the transformations of cobalt in the atmosphere are limited. Anthropogenic cobalt from combustion processes is assumed to be primarily oxides (Schroeder et al., 1987). Arsenide and sulfide forms are also released into the atmosphere during ore extraction processes. It is unclear whether these forms of cobalt are transformed in the atmosphere. If oxides are transformed into more soluble species such as sulfates, then these may be washed out of the atmosphere in rain. Ultimately, the final repository for cobalt is soil and sediment.
References:
WHO (2006). Concise International Chemical Assessment (CICAD) Document 69, Cobalt and inorganic cobalt compounds.
Milford JB, Davidson CI (1985) The size of particulate trace elements in the atmosphere — a review. Journal of the Air Pollution Control Association, 35(12):1249–1260.
Schroeder WH, Dobson M, Kane DM, Johnson ND (1987) Toxic trace elements associated with airborne particulate matter: A review. Journal of the Air Pollution Control Association, 37(11):1267–1285.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.