Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 247-660-8 | CAS number: 26401-35-4
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Link to relevant study record(s)
Description of key information
Key value for chemical safety assessment
Additional information
Diisotridecyl adipate (DITA)
DITA is a diester of a dicarboxylic acid consisting of adipic acid (C6 carbon frame) and isotridecyl alcohols with a branched carbon chain (n = 13). Accordingly, DITA is expected to show the typical characteristics of an ester. In vivo, esters are hydrolysed by ubiquitous hydrolases to alcohol and carboxylic acid. In case of diesters, this operation will proceed in two steps resulting first in a monoester. Isotridecyl alcohol and adipic acid, formed by hydrolysis of DITA, will then follow metabolic pathways typical for alcohols and carboxylic acids.
In principle given the background information on aliphatic saturated long chain esters, alcohols and acids, the following properties and metabolic pathways are expected for DITA.
Absorption: diisotridecyl adipate and eventually isotridecyl alcohol and adipic acid are rapidly absorbed from the gastro-intestinal tract, whereas dermal absorption is expected to be slow.
Biotransformation: diisotridecyl adipate is expected to hydrolyse rapidly in vivo to isotridecyl alcohol and adipic acid. The alcohol will be oxidised by alcohol dehydrogenase and aldehyde dehydrogenase to the corresponding aldehyde and carboxylic acid. Isotridecyl alcohol is not expected to be a good substrate for ADH and AlDH, due to its branched bulky structure. ß-Oxidation of the carboxylic acid may be hindered by methy/alkyl substituents at uneven positions, forcing oxidation at other positions. and preventing further degradation in the citrate cycle. Therefore, significant chain hydroxylation and conjugation reactions of the alcohol and of other metabolic oxidation products are expected to account for the majority of the biotransformation.
Excretion of polar metabolites and conjugates may occur via urine and bile and is estimated to be substantial. Expiration of CO2 is not expected to be important Entero-hepatic circulation of metabolites excreted via bile is likely to occur (Eisenbrand 2002).
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.