Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 500-199-9 | CAS number: 68183-39-1
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Genetic toxicity: in vitro
Administrative data
- Endpoint:
- in vitro cytogenicity / chromosome aberration study in mammalian cells
- Remarks:
- Type of genotoxicity: chromosome aberration
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Study period:
- 03-Jul-2012 to 02-Oct-2012
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- other: The study has been performed according to OECD and/or EC guidelines and according to GLP principles.
Data source
Reference
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 2 012
- Report date:
- 2012
Materials and methods
Test guidelineopen allclose all
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 473 (In Vitro Mammalian Chromosome Aberration Test)
- Deviations:
- no
- Qualifier:
- according to guideline
- Guideline:
- EU Method B.10 (Mutagenicity - In Vitro Mammalian Chromosome Aberration Test)
- Deviations:
- no
- GLP compliance:
- yes (incl. QA statement)
- Type of assay:
- in vitro mammalian chromosome aberration test
Test material
- Test material form:
- other: yellow to brown lumps
- Details on test material:
- - Substance type: organic (UVCB)
- Purity: 100%
- Physical state: Solid
- Hygroscopic: Yes, store in well-sealed container
- Reactivity: Reactive to moisture
- Storage condition of test material: At room temperature in the dark
Constituent 1
Method
- Target gene:
- unspecific
Species / strain
- Species / strain / cell type:
- lymphocytes: Human
- Details on mammalian cell type (if applicable):
- - Type and identity of media:
Blood samples
Blood samples were collected by venapuncture using the Venoject multiple sample blood collecting system with a suitable size sterile vessel containing sodium heparin. Immediately after blood collection lymphocyte cultures were started.
- Culture medium
Culture medium consisted of RPMI 1640 medium, supplemented with 20% (v/v) heat-inactivated (56°C; 30 min) foetal calf serum, L-glutamine (2 mM), penicillin/streptomycin (50 U/mL and 50 µg/mL respectively) and 30 U/mL heparin.
- Lymphocyte cultures
Whole blood (0.4 mL) treated with heparin was added to 5 mL or 4.8 mL culture medium (in the absence and presence of S9-mix, respectively). Per culture 0.1 ml (9 mg/mL) phytohaemagglutinin was added.
- Properly maintained: yes
- Periodically checked for Mycoplasma contamination: not applicable, immediately after blood collection lymphocyte cultures were started.
- Periodically checked for karyotype stability: yes
- Periodically "cleansed" against high spontaneous background: not applicable, immediately after blood collection lymphocyte cultures were started. - Additional strain / cell type characteristics:
- not applicable
- Metabolic activation:
- with and without
- Metabolic activation system:
- Rat liver S9-mix induced by a combination of phenobarbital and ß-naphthoflavone.
- Test concentrations with justification for top dose:
- Dose range finding test:
Without and with S9-mix, 3hr exposure; 24 hr fixation: 3, 10, 33, 100 and 333 µg/mL
Without S9-mix, 24/48hr exposure; 24/48 hr fixation: 3, 10, 33, 100, 3330 and 1000 µg/mL
First cytogenetic test:
Without S9-mix, 3 h exposure time, 24 h fixation time: 10, 100 and 333 µg/mL
With S9-mix, 3 h exposure, 24 h fixation time: 10, 100 and 333 µg/ mL
Second cytogenetic test:
Without S9-mix, 24 hr exposure; 24 hr fixation: 1, 250 and 500 µg/mL
Without S9-mix, 48 hr exposure; 48 hr fixation: 0.1, 100 and 300 µg mL
With S9-mix, 3 hr exposure; 48 hr fixation: 10, 100 and 333 µg/mL - Vehicle / solvent:
- - Vehicle(s)/solvent(s) used: DMSO
- Justification for choice of solvent/vehicle:
Test compound was soluble in DMSO and DMSO has been accepted and approved by authorities and international guidelines
Controlsopen allclose all
- Untreated negative controls:
- no
- Negative solvent / vehicle controls:
- yes
- Positive controls:
- yes
- Positive control substance:
- mitomycin C
- Remarks:
- without S9 Migrated to IUCLID6: in Hank's Balanced Salt Solution: 0.5 µg/mL for a 3 h exposure period, 0.2 µg/mL for a 24 h exposure period and 0.1 µg/mL for a 48 h exposure period
- Untreated negative controls:
- no
- Negative solvent / vehicle controls:
- yes
- Positive controls:
- yes
- Positive control substance:
- cyclophosphamide
- Remarks:
- with S9 Migrated to IUCLID6: in Hank's Balanced Salt Solution: 10 µg/mL
- Details on test system and experimental conditions:
- METHOD OF APPLICATION: in medium
DURATION
- Preincubation period: 48 hr
- Exposure duration: 3 hr (with and without S9-mix), 24 and 48 hr (without S9-mix)
- Fixation time (start of exposure up to fixation or harvest of cells): 24 and 48 hr
SPINDLE INHIBITOR (cytogenetic assays): colchicine
STAIN (for cytogenetic assays): Giemsa
NUMBER OF REPLICATIONS: duplicates in two independent experiments
NUMBER OF CELLS EVALUATED: 100 metaphase chromosome spreads per culture
DETERMINATION OF CYTOTOXICITY
- Method: mitotic index of each culture was determined by counting the number of metaphases per 1000 cells
OTHER EXAMINATIONS:
- Determination of polyploidy: yes
- Determination of endoreplication: yes - Evaluation criteria:
- A test substance was considered positive (clastogenic) in the chromosome aberration test if:
a) It induced a dose-related statistically significant (Chi-square test, one-sided, p < 0.05) increase in the number of cells with chromosome aberrations.
b) A statistically significant and biologically relevant increase in the frequencies of the number of cells with chromosome aberrations was observed in the absence of a clear dose-response relationship.
A test substance was considered negative (not clastogenic) in the chromosome aberration test if none of the tested concentrations induced a statistically significant (Chi-square test, one-sided, p < 0.05) increase in the number of cells with chromosome aberrations. - Statistics:
- The incidence of aberrant cells (cells with one or more chromosome aberrations, gaps included or excluded) for each exposure group outside the laboratory historical control data range was compared to that of the solvent control using Chi-square statistics.
Results and discussion
Test results
- Key result
- Species / strain:
- lymphocytes: Human
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Additional information on results:
- TEST-SPECIFIC CONFOUNDING FACTORS
- Effects of pH: No
- Effects of osmolality: No
- Precipitation: Precipitation in the exposure medium was observed at dose levels of 300 µg/ml and above
RANGE-FINDING/SCREENING STUDIES:
- Toxicity was observed at dose levels of 33 µg/ml and above in the absence and presence of S9, 3 hr treatment/24 hr fixation; at dose levels of 33 and 10 µg/ml and above in the absence of S9 for the continuous treatment of 24 and 48 hr, respectively.
COMPARISON WITH HISTORICAL CONTROL DATA:
- The number of cells with chromosome aberrations found in the solvent and positive control cultures was within the laboratory historical control data range. Positive control chemicals, mitomycin C and cyclophosphamide induced appropriate responses.
ADDITIONAL INFORMATION ON CYTOTOXICITY:
- Appropriate toxicity was reached at the dose levels selected for scoring or the highest dose level was determined by the solubility.
Any other information on results incl. tables
Species/strain: Primary human lymphcytes
Metabolic activation: With and without metabolic activation by rat liver S9-mix induced by a combination of phenobarbital and ß-naphthoflavone.
Cytotoxicity: Observed at dose levels of 33 µg/ml and above in the absence and presence of S9, 3 hr treatment/24 hr fixation; at dose levels of 33 and 10 µg/ml and above in the absence of S9 for the continuous treatment of 24 and 48 hr, respectively.
Genotoxicity: -
The number of cells with chromosome aberrations found in the solvent control cultures was within the laboratory historical control data range. No induction of a statistically significant or biologically relevant increase in the number of cells with chromosome aberrations in the absence and presence of S9-mix, in either of the two independently repeated experiments. No effects of the test substance on the number of polyploid cells and cells with endoreduplicated chromosomes were observed both in the absence and presence of S9-mix. Therefore it can be concluded that Benzene-1,2,4-tricarboxylic acid 1,2-anhydride, oligomeric reaction products with ethane-1,2-diol and glycerol does not disturb mitotic processes and cell cycle progression and does not induce numerical chromosome aberrations under the experimental conditions described in this report.
Applicant's summary and conclusion
- Conclusions:
- Interpretation of results (migrated information):
negative
It is concluded that Benzene-1,2,4-tricarboxylic acid 1,2-anhydride, oligomeric reaction products with ethane-1,2-diol and glycerol is not clastogenic in human lymphocytes under the experimental conditions described in the report. - Executive summary:
The number of cells with chromosome aberrations found in the solvent control cultures was within the laboratory historical control data range. Positive control chemicals, mitomycin C and cyclophosphamide, both produced a statistically significant increase in the incidence of cells with chromosome aberrations, indicating that the test conditions were adequate and that the metabolic activation system (S9-mix) functioned properly. Benzene-1,2,4-tricarboxylic acid 1,2-anhydride, oligomeric reaction products with ethane-1,2-diol and glycerol did not induce a statistically significant or biologically relevant increase in the number of cells with chromosome aberrations in the absence and presence of S9-mix, in either of the two independently repeated experiments. No effects of the test substance on the number of polyploid cells and cells with endoreduplicated chromosomes were observed both in the absence and presence of S9-mix. Therefore it can be concluded that Benzene-1,2,4-tricarboxylic acid 1,2-anhydride, oligomeric reaction products with ethane-1,2-diol and glycerol does not disturb mitotic processes and cell cycle progression and does not induce numerical chromosome aberrations under the experimental conditions described in this report.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.

Welcome to the ECHA website. This site is not fully supported in Internet Explorer 7 (and earlier versions). Please upgrade your Internet Explorer to a newer version.
This website uses cookies to ensure you get the best experience on our websites.
Find out more on how we use cookies.