Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 201-297-1 | CAS number: 80-62-6
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Toxicity to microorganisms
Administrative data
Link to relevant study record(s)
- Endpoint:
- toxicity to microorganisms, other
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- guideline study
- Reason / purpose for cross-reference:
- reference to other study
- Qualifier:
- according to guideline
- Guideline:
- other: OECD 301C, MITI I Test
- GLP compliance:
- not specified
- Specific details on test material used for the study:
- not specified
- Details on test solutions:
- TEST CONDITIONS
- Composition of medium: 3 mL each of four stock solutions, as described in JIS K 0102-1986-21, are diluted to 1000 mL with purified water
- pH: 7.0
- pH adjusted: yes
- Suspended solids concentration: determined according to Method Japanese Industrial Standards (JIS) K 0102-1986-14.1
- Cultivation temperature: 25 °C - Test organisms (species):
- activated sludge
- Details on inoculum:
- - Source of inoculum/activated sludge (e.g. location, sampling depth, contamination history, procedure): In March, June, September, and December, sludge was sampled at the following 10 places in Japan: 1. Fukogawa city sewage plant, 2. Fukashiba industry sewage plant, 3. Nakahama city sewage plant, 4. Ochiai city sewage plant, 5. Kitakami river, 6. Shinano river, 7. Yoshino river, 8. Lake Biwa, 9. Hiroshima bay, 10. Dookai bay; sampling: 1. City sewage: Returned sludge from sewage plants was taken. 2. Rivers, lake and sea: Surface water and surface soil which were in contact with atmosphere were collected.
- Method of cultivation: About 30 minutes after ceasing aeration to the sludge mixture, supernatant corresponding to about 1/3 of the whole volume was removed. Then the equal volume of dechlorinated water was added to the remaining portion and aerated again, followed by addition of synthetic sewage at a concentration of 0.1% (w/v). This procedure was repeated once every day. The culturing was carried out at 25 ± 2 °C. 5 L of the filtrate of the supernatant of old activated sludge was mixed with 500 mL of the filtrate of the supernatant of new sludge and cultured at pH 7.0 ± 1.0 under sufficient aeration using prefiltered open air. During the cultivation, appearance of the supernatant, precipitability, formation of flock, pH, dissolved oxygen concentration in the solution and temperature were checked and necessary adjustments were made, Microflora in the activated sludge was microscopically observed and sludge with no abnormal symptom was used for the test.
- Concentration of sludge: 30 mg/L - Test type:
- static
- Water media type:
- freshwater
- Total exposure duration:
- 14 d
- Test temperature:
- The culturing was carried out at 25 ± 2 °C. 5
- pH:
- - pH: 7.0
- Details on test conditions:
- Standard test conditions of the modified MITI (I) test
- Duration:
- 14 d
- Dose descriptor:
- other: no inhibition of biodegradation (94 % in 14 d)
- Effect conc.:
- 100 mg/L
- Nominal / measured:
- nominal
- Conc. based on:
- test mat.
- Basis for effect:
- other: biodegradation
- Details on results:
- After 14 d incubation the test material was biodegraded by 94 %.
There was no inhibiotion of biodegradation by the test material at 100 mg/L. - Conclusions:
- In a standard modified MITI (I) test after 14 d incubation the test material was biodegraded by 94 %.
There was no inhibition of biodegradation by the test material at 100 mg/L.
Methyl methacrylate is not toxic to microorganisms. - Executive summary:
In a standard modified MITI (I) test after 14 d incubation the test material was biodegraded by 94 %.
There was no inhibition of biodegradation by the test material at 100 mg/L.
Methyl methacrylate is not toxic to microorganisms.
Reference
Percentage biodegradation(%) average BOD = 94.3 TOC = 99 GC = 99 UV = 99 |
Description of key information
The inhibition of the degradation activity of activated sludge is not anticipated when introduced in appropriate concentrations.
NOEC for microorganisms is considered to be >100 mg/l.
Key value for chemical safety assessment
- EC10 or NOEC for microorganisms:
- 100 mg/L
Additional information
Methyl methacrylate was non-toxic to activated sludge in a test for ready biodegradability according to the modified MITI (I) protocol. 94 % biodegradation were achieved within 14 d, indicating the absence of toxicity up to 100 mg/L. This is consistent with other microbial toxicity test results and with test data in higher aquatic organisms.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.