Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 232-188-7 | CAS number: 7789-75-5
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Neurotoxicity
Administrative data
Description of key information
One published study with sodium fluoride is available. The study was designed to assess the neurotoxicity of sodium fluoride (NaF) in Sprague-Dawley rats. Rats were exposed prenatally, as weanling, or adults. Prenatal exposure - dams were injected subcutaneously with 0.13 mg/kg NaF or saline on gestational days 14 -18 or 17 -19. Weanlings were exposed to NaF in their drinking water at 0, 75, 100 or 125 ppm for 6 to 20 weeks. 3 month old adults received water containing 100 ppm for 6 weeks. Fluoride exposure caused sex and dose specific behavioural disruption (as measured by computer pattern recognition in a novel environment), with a common pattern. Males were most sensitive to prenatal day 17 -19 exposure, whereas females were more sensitive to weanling and adult exposures. After fluoride ingestion, the severity of the effect on behaviour increased directly with plasma F levels and F concentrations in specific brain regions.
Key value for chemical safety assessment
Effect on neurotoxicity: via oral route
Endpoint conclusion
- Endpoint conclusion:
- no study available
Effect on neurotoxicity: via inhalation route
Endpoint conclusion
- Endpoint conclusion:
- no study available
Effect on neurotoxicity: via dermal route
Endpoint conclusion
- Endpoint conclusion:
- no study available
Additional information
Fluoride exposure caused sex and dose specific behavioural disruption (as measured by computer pattern recognition in a novel environment), with a common pattern. Males were most sensitive to prenatal day 17 -19 exposure, whereas females were more sensitive to weanling and adult exposures. After fluoride ingestion, the severity of the effect on behaviour increased directly with plasma F levels and F concentrations in specific brain regions.
In the absence of water consumption information, it is not possible to calculate the actual received fluoride levels in this study.
Justification for classification or non-classification
No classification is proposed for neurotoxicity according to the CLP Regulation 1272/2008/EC). Classification as a neurotoxicant is assessed as part of STOT-RE classification. The effects observed in the available study are not considered to be indicative of functional impairment, nor is it possible to confirm at which actual received fluoride dose level the observed effects occur.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.

EU Privacy Disclaimer
This website uses cookies to ensure you get the best experience on our websites.