Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 284-366-9 | CAS number: 84852-53-9
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Toxicity to other aquatic organisms
Administrative data
- Endpoint:
- toxicity to other aquatic vertebrates
- Type of information:
- experimental study
- Adequacy of study:
- supporting study
- Study period:
- 2013-2014
- Reliability:
- 4 (not assignable)
- Rationale for reliability incl. deficiencies:
- documentation insufficient for assessment
Data source
Reference
- Reference Type:
- publication
- Title:
- Unnamed
- Year:
- 2 018
- Report date:
- 2018
Materials and methods
- Principles of method if other than guideline:
- Fifteen halogenated flame retardants (HFRs) including seven emerging brominated flame retardants (EBFRs) and eight dechlorane-related compounds (DRCs) were analyzed in eels (Anguilla anguilla) sampled from five Latvian lakes.
- GLP compliance:
- not specified
Test material
Sampling and analysis
- Analytical monitoring:
- yes
- Details on sampling:
- Fifty eight eel (Anguilla anguilla) specimens of various length and weight were caught in Latvian freshwater lakes during the period from September 2013 to May 2014. These locations were carefully selected to evenly cover all essential eel stocks in the Latvian territory and also to have a maximum variation in body weight and length. At least five eel specimens were collected to represent each sampling site.
Test organisms
- Aquatic vertebrate type (other than fish):
- other: Eels
Study design
- Test type:
- other: Environmental sampling
Results and discussion
Applicant's summary and conclusion
- Conclusions:
- Fifteen halogenated flame retardants (HFRs) including seven emerging brominated flame retardants (EBFRs) and eight dechlorane-related compounds (DRCs) were analyzed in eels (Anguilla anguilla) sampled from five Latvian lakes. Out of the seven EBFRs, hexabromocyclododecane (HBCD) and decabromodiphenyl ethane (DBDPE) were found in eels in quantifiable concentrations, up to 6.58 and 33.0 ng g 1 lipid weight (l.w.), respectively. The determined concentrations of HFRs were lower than in other studies of aquatic biota from Europe and Asia, and the obtained results reflect the acceptable environmental status of Latvian lakes with regard to the total content of HBCD (PHBCD), considering the environmental quality standards (EQS) stated in the Directive 2013/39/EU. The highest PHBCD levels were observed in eels from lakes corresponding to the industrialization of those areas, while the results of principal component analysis (PCA) showed that the concentrations of HBCD depended on the particular sampling lake, reflecting non-uniform contamination of the Latvian environment with this EBFR.
- Executive summary:
Fifteen halogenated flame retardants (HFRs) including seven emerging brominated flame retardants (EBFRs) and eight dechlorane-related compounds (DRCs) were analyzed in eels (Anguilla anguilla) sampled from five Latvian lakes. Out of the seven EBFRs, hexabromocyclododecane (HBCD) and decabromodiphenyl ethane (DBDPE) were found in eels in quantifiable concentrations, up to 6.58 and 33.0 ng g 1 lipid weight (l.w.), respectively. The determined concentrations of HFRs were lower than in other studies of aquatic biota from Europe and Asia, and the obtained results reflect the acceptable environmental status of Latvian lakes with regard to the total content of HBCD (PHBCD), considering the environmental quality standards (EQS) stated in the Directive 2013/39/EU. The highest PHBCD levels were observed in eels from lakes corresponding to the industrialization of those areas, while the results of principal component analysis (PCA) showed that the concentrations of HBCD depended on the particular sampling lake, reflecting non-uniform contamination of the Latvian environment with this EBFR.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.