Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 231-150-7 | CAS number: 7440-41-7
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Particle size distribution (Granulometry)
Administrative data
Link to relevant study record(s)
Description of key information
Information on particle size distribution is provided for elelmental beryllium. However, in the EU Beryllium is only imported, transported, stored, handled and marketed as solid material (e.g. blocks, bars).
Additional information
Beryllium is only imported, transported, stored, handled and marketed as solid material (e.g. blocks, bars) and treated only by well-trained professional users but not in granular or powder form.
Beryllium metal within the EEA is usually provided in article form that needs little processing for end use applications. Beryllium metal in article form may undergo some machining that is done under very controlled conditions. The vast majority of applications involve the use of copper beryllium components which are inert, stable and do not give off emissions during use. Beryllium-containing alloys are only used in key places in products where they provide a design solution based on miniaturization, improved energy management, reliability and/or extending the service life. Within the European Economic Area, copper beryllium and nickel beryllium alloys are mostly stamped into a variety of shapes, sizes and designs for use in electrical and electronic equipment and present very little risk of exposure to airborne particulate. Copper beryllium is eminently recyclable. Copper beryllium materials, that are not able to be separated due very minute quantities being embedded in devices, are normally processed in a copper waste recovery process.
As with all metals, particulate can be generated during processing of metal articles. Particle distributions are dependent on the type of operation and can range from fume size particulate in hot work applications to large chunks in cutting and shearing type operations. Casting or master alloys, that are melted in the European foundry industry to produce alloys with different concentrations, generate particulates of varying composition and particle sizes.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.